SEEK Semantic Mediation Shawn Bowers Bertram Ludäscher e-Science Centre, May 11-14, 2004,

Slides:



Advertisements
Similar presentations
Dr. Leo Obrst MITRE Information Semantics Information Discovery & Understanding Command & Control Center February 6, 2014February 6, 2014February 6, 2014.
Advertisements

BAH DAML Tools XML To DAML Query Relevance Assessor DAML XSLT Adapter.
Y. Jaques Yves Jaques ICIS Requirements Gathering, June 2008, Rome NeOn Lifecycle Support for Networked Ontologies.
Introduction to Databases: From Data to Knowledge Bases Instructors: Bertram Ludaescher Kai Lin Instructors: Bertram Ludaescher Kai Lin.
Semantic annotation on the SONet and Semtools projects: Challenges for broad multidisciplinary exchange of observational data Mark Schildhauer, NCEAS/UCSB.
Technical BI Project Lifecycle
Using the Semantic Web to Construct an Ontology- Based Repository for Software Patterns Scott Henninger Computer Science and Engineering University of.
International Workshop on Semantic Based GIS Ontology assisted decision making a case study in trip planning for tourism Eleni Tomai, Maria Spanaki, Poulicos.
Research topics Semantic Web - Spring 2007 Computer Engineering Department Sharif University of Technology.
P2P Information Interoperability & Decision Support Domain Application SEMANTIC INTEROP QUERY PROCESSING GIS INTEROP P2P ● Heterogeneous semantic ● Semantic.
1 Lecture 13: Database Heterogeneity Debriefing Project Phase 2.
Ontology translation: two approaches Xiangkui Yao OntoMorph: A Translation System for Symbolic Knowledge By: Hans Chalupsky Ontology Translation on the.
Synthesis of Incomplete and Qualified Data using the GCE Data Toolbox Wade Sheldon Georgia Coastal Ecosystems LTER University of Georgia.
Improving Data Discovery in Metadata Repositories through Semantic Search Chad Berkley 1, Shawn Bowers 2, Matt Jones 1, Mark Schildhauer 1, Josh Madin.
Methods for Data Discovery – Portals Portal facilitates access to and also assimilation of data Portal is not simply a web site: it offers services such.
Formalizing and Querying Heterogeneous Documents with Tables Krishnaprasad Thirunarayan and Trivikram Immaneni Department of Computer Science and Engineering.
BiodiversityWorld GRID Workshop NeSC, Edinburgh – 30 June and 1 July 2005 Metadata Agents and Semantic Mediation Mikhaila Burgess Cardiff University.
The Database and Info. Systems Lab. University of Illinois at Urbana-Champaign Light-weight Domain-based Form Assistant: Querying Web Databases On the.
1 Distributed Database Concepts 8:30-10:00AM Thursday, July 21 st 2005 CSIG05 Chaitan Baru.
An Introduction to Description Logics. What Are Description Logics? A family of logic based Knowledge Representation formalisms –Descendants of semantic.
Copyright © 2013 Curt Hill The Zachman Framework What is it all about?
Peer-to-Peer Data Integration Using Distributed Bridges Neal Arthorne B. Eng. Computer Systems (2002) Supervisor: Babak Esfandiari April 12, 2005 Candidate.
Introduction to MDA (Model Driven Architecture) CYT.
SONet: Scientific Observations Network Semtools: Semantic Enhancements for Ecological Data Management Mark Schildhauer, Matt Jones, Shawn Bowers, Huiping.
Pipelines and Scientific Workflows with Ptolemy II Deana Pennington University of New Mexico LTER Network Office Shawn Bowers UCSD San Diego Supercomputer.
Building an Ontology of Semantic Web Techniques Utilizing RDF Schema and OWL 2.0 in Protégé 4.0 Presented by: Naveed Javed Nimat Umar Syed.
1 Foundations V: Infrastructure and Architecture, Middleware Deborah McGuinness TA Weijing Chen Semantic eScience Week 10, November 7, 2011.
Dynamic Hypermedia Generations through a Mediator using CRM and Web Service Jen-Shin Hong National ChiNan University,Taiwan
Semantic Data Integration in myGrid and ourGrid (SEEK) National e-Science Centre e-Science Institute, Edinburgh May 14 th, 2004.
Semantic Mediation in SEEK/Kepler: Exploiting Semantic Annotation for Discovery, Analysis, and Integration of Scientific Data and Workflows Bertram Ludäscher.
11 CORE Architecture Mauro Bruno, Monica Scannapieco, Carlo Vaccari, Giulia Vaste Antonino Virgillito, Diego Zardetto (Istat)
SEEK EcoGrid l Integrate diverse data networks from ecology, biodiversity, and environmental sciences l Metacat, DiGIR, SRB, Xanthoria,... l EML is the.
Chad Berkley NCEAS National Center for Ecological Analysis and Synthesis (NCEAS), University of California Santa Barbara Long Term Ecological Research.
Ontologies in Data and Application Integration – an Update Kai Lin Bertram Ludäscher Knowledge-Based Information Systems Lab Data and Knowledge Systems.
©Ferenc Vajda 1 Semantic Grid Ferenc Vajda Computer and Automation Research Institute Hungarian Academy of Sciences.
Quality views: capturing and exploiting the user perspective on data quality Paolo Missier, Suzanne Embury, Mark Greenwood School of Computer Science University.
GREGORY SILVER KUSHEL RIA BELLPADY JOHN MILLER KRYS KOCHUT WILLIAM YORK Supporting Interoperability Using the Discrete-event Modeling Ontology (DeMO)
M.Benno Blumenthal and John del Corral International Research Institute for Climate and Society OpenDAP 2007
Scaling Heterogeneous Databases and Design of DISCO Anthony Tomasic Louiqa Raschid Patrick Valduriez Presented by: Nazia Khatir Texas A&M University.
Page 1© Crown copyright 2004 FLUME Metadata Steve Mullerworth 3 rd -4 th October May 2006.
ESIP Semantic Web Products and Services ‘triples’ “tutorial” aka sausage making ESIP SW Cluster, Jan ed.
An Ontology-Driven Framework for Data Transformation in Scientific Workflows Shawn Bowers Bertram Ludäscher San Diego Supercomputer Center University of.
Issues in Ontology-based Information integration By Zhan Cui, Dean Jones and Paul O’Brien.
Application Ontology Manager for Hydra IST Ján Hreňo Martin Sarnovský Peter Kostelník TU Košice.
A Semantic Web Approach for the Third Provenance Challenge Tetherless World Rensselaer Polytechnic Institute James Michaelis, Li Ding,
1 Class exercise II: Use Case Implementation Deborah McGuinness and Peter Fox CSCI Week 8, October 20, 2008.
Using DAML+OIL Ontologies for Service Discovery in myGrid Chris Wroe, Robert Stevens, Carole Goble, Angus Roberts, Mark Greenwood
Toward a framework for statistical data integration Ba-Lam Do, Peb Ruswono Aryan, Tuan-Dat Trinh, Peter Wetz, Elmar Kiesling, A Min Tjoa Linked Data Lab,
SEEK Science Environment for Ecological Knowledge l EcoGrid l Ecological, biodiversity and environmental data l Computational access l Standardized, open.
NSF DUE ; Wen M. Andrews J. Sargeant Reynolds Community College Richmond, Virginia.
Feb 24-27, 2004ICDL 2004, New Dehli Improving Federated Service for Non-cooperating Digital Libraries R. Shi, K. Maly, M. Zubair Department of Computer.
1 Open Ontology Repository initiative - Planning Meeting - Thu Co-conveners: PeterYim, LeoObrst & MikeDean ref.:
Context Observation Measurement Relationship Entity Characteristic Value Standard hasContextRelationship ofEntity hasValue ofCharacteristic usesStandard.
The Database and Info. Systems Lab. University of Illinois at Urbana-Champaign Light-weight Domain-based Form Assistant: Querying Web Databases On the.
Semantic Data Extraction for B2B Integration Syntactic-to-Semantic Middleware Bruno Silva 1, Jorge Cardoso 2 1 2
Copyright 2007, Information Builders. Slide 1 iWay Web Services and WebFOCUS Consumption Michael Florkowski Information Builders.
Semantic Interoperability in GIS N. L. Sarda Suman Somavarapu.
Department of Computer Science & Engineering University of California, San Diego CSE-291:Ontologies in Data and Process Integration Spring 2004 Bertram.
Of 24 lecture 11: ontology – mediation, merging & aligning.
1 Ontology Enabled Data Integration Kai Lin San Diego Supercomputer Center University of California, San Diego.
OWL (Ontology Web Language and Applications) Maw-Sheng Horng Department of Mathematics and Information Education National Taipei University of Education.
Improving Data Discovery Through Semantic Search
Bertram Ludäscher Department of Computer Science & Engineering University of California, San Diego CSE-291:Ontologies in Data and.
Data Warehouse.
RDF Standard Data Model Exchange
Constructing MDA-based Application Using Rational XDE for .NET
Metadata Framework as the basis for Metadata-driven Architecture
Session 2: Metadata and Catalogues
Chaitali Gupta, Madhusudhan Govindaraju
ONTOMERGE Ontology translations by merging ontologies Paper: Ontology Translation on the Semantic Web by Dejing Dou, Drew McDermott and Peishen Qi 2003.
Presentation transcript:

SEEK Semantic Mediation Shawn Bowers Bertram Ludäscher e-Science Centre, May 11-14, 2004,

Outline The Sparrow ToolkitThe Sparrow Toolkit Semantic RegistrationSemantic Registration Ontology-Driven Structural TransformationOntology-Driven Structural Transformation

Outline The Sparrow ToolkitThe Sparrow Toolkit Semantic RegistrationSemantic Registration Ontology-Driven Structural TransformationOntology-Driven Structural Transformation

Semantic Mediation in SEEK: Our focus Resource Discovery –Ontology-driven tools to help search for datasets and services using semantic descriptions … Data Transformation –Determine and execute mappings to compose services and bind data to services Data Integration –Provide reconciled, uniform access to multiple datasets “Semantic” Workflow Analysis –Verify semantic correctness, accumulate semantic information, and provide workflow planning/suggestion services … the future

The Sparrow Toolkit: Vision Lightweight Languages and command-line-style services to support mediation –Syntax and language conversion DL, FOL, OWL, RDF, … –Reasoning subsumption, classification, consistency, satisifiability, datatypes, instance classification, … –Display utilities hierarchies, OO/ER style models, OWL DLs? –Query Query answering, semantic query rewriting, semantic registration, integration, … Logic-based implementation (Prolog)

Some sparrow-dl (Taxon example)

Some more sparrow-dl (“textbook” example)

display_formulas(KB)

display_preclassified_hierarchy(K)

display_classified_hierarchy(K)

display_classified(K)

Outline The Sparrow ToolkitThe Sparrow Toolkit Semantic RegistrationSemantic Registration Ontology-Driven Structural TransformationOntology-Driven Structural Transformation

Adding semantics to EML: Observations The finer grain the annotation, the more opportunity for discovery, integration, and transformation … The coarser grain the annotation, the harder it is to do useful operations; unless your ontology is very deep annotation granularity ontology depth finecourse shallow deep maximal ontology/annotation leverage

Semantic Registration (SSDBM’04) By annotation granularity, we mean: –Resource-Level “Metadata” –Attribute Level (the attribute itself) –Attribute Level (as a collection-value) –Attribute Level (as independent values) –Attribute Groups (as a collection-value or independent values) –Filtered values (e.g., SQL where-clause) –Specific value annotations (as a mapping function or stated by- hand) Often, integration and transformation require very detailed annotations

Some Examples (arguments against concepts-as-labels) r(…, lt, ln, …) sem(lt) == latitude sem(ln) == longitude Question: What do these annotations mean? 1.The name “lt” itself refers to latitude? 2.The set of values in the column taken as a whole make up a latitude (like coverage) 3.Each individual value in the column denotes a separate latitude (Is it a latitude though? Or just a coded rep.?) We want to avoid these ambiguous anntotations … often

Some Examples (still not enough) r(…, lt, ln, …) sem(lt) == values represent latitude sem(ln) == values represent longitude More problems: How do I know lt and ln go together to form a location, for example, … Location LatitudeLongitude latlon

Some Examples (still not enough) r(…, lt, ln, lt-end, ln-end, …) sem(lt) == values represent latitude sem(ln) == values represent longitude sem(lt-end) == values represent latitude sem(ln-end) == values represent longitude Which lat goes with which lon? Location LatitudeLongitude latlon

Some Examples (still not enough) r(…, lt, ln, lt-end, ln-end, …) sem(lt, ln) == values represent location and lat leads to semval(lt) and lon leads to semval(ln) ** sem(lt, ln) == values represent location sem(lt) == values represent latitude sem(ln) == values represent longitude sem(lt, ln) == values represent location and … sem(lt-end) == values represent latitude sem(ln-end) == values represent longitude What if we want to integrate with another dataset with two lat/lons? What do we do? Location LatitudeLongitude latlon * We could infer the lat and lon roles here; in general, I don’t think we can infer roles as such…

Some Examples (still not enough) r(…, lt, ln, lt-end, ln-end, …) sem(lt, ln, lt-end, ln-end) === values represent transect and start leads to semval(lt, ln) and end leads to semval(lt-end, ln-end) sem(lt, ln) == values represent location and … sem(lt) == values represent latitude sem(ln) == values represent longitude sem(lt, ln) == values represent location and … sem(lt-end) == values represent latitude sem(ln-end) == values represent longitude So, even in very simple cases, annotations can become complex… Location LatitudeLongitude latlon Transect start end

Executable, Fine-Grain Semantic Registration genusspeciescountlatlon 'Acanthomyops''latipes' , 'Acromyrmex''versicolor' 'Anergates‘'atratulus' 'Anergates‘'atratulus' Each row represents a RatioMeasurement RatioMeasurement

Executable, Fine-Grain Semantic Registration (cont.) genusspeciescountlatlon 'Acanthomyops''latipes' , 'Acromyrmex''versicolor' 'Anergates‘'atratulus' 'Anergates‘'atratulus' For a row, count is the value of the measurement value 1 dataValue RatioMeasurement LocalInteger

Executable, Fine-Grain Semantic Registration (cont.) genusspeciescountlatlon 'Acanthomyops''latipes' 'Acromyrmex''versicolor' 'Anergates‘'atratulus' 'Anergates‘'atratulus' For a row, lat/lon are the locations values of the measurement value 1 dataValue context location latitude longitude RatioMeasurement LocalInteger LocationContext GeogCoordPoint

Executable, Fine-Grain Semantic Registration (cont.) genusspeciescountlatlon 'Acanthomyops''latipes' 'Acanthomyops''latipes' 'Acromyrmex''versicolor' 'Anergates‘'atratulus' 'Anergates‘'atratulus' For a row, genus/species are mapped to standard values, associated RatioMeasurement itemMeasured Count propertyEntity TaxonomicGroup … taxonomicID SimpleTaxonomicId genus Genus rankName taxon:1883/5 Species species rankName taxon:1883/3 subCat superCat

Querying based on Semantic Registrations value 1 dataValue context location latitude longitude RatioMeasurement LocalInteger LocationContext GeogCoordPoint itemMeasured Count propertyEntity TaxonomicGroup taxonomicID SimpleTaxonomicId genus Genus rankName taxon:1883/5 Species species rankName taxon:1883/3 subCat superCat Find all datasets that measure species of ‘Acanthomyops’ in South Africa … and return a set of all lat/lon “points” (demo …)

Architecture SMS Operations Dataset repository (heterogeneous) Lat/Lon Species Queries Semantic Annotations Taxon Services Synonyms Concept IDs … Ontology repository Results discover_resources query_resources integrate_resources Mappings

Finding user interfaces that are easy-to-use, but provide detailed annotations genusspecieslatloncount TaxaConceptIDValue ‘Manica’‘bradleyi’ ‘Formica’‘fusca’ resource id: > antweb:040412

A Sparrow Executable Semantic Annotation Registration A partial object instantiation (of onto classes) The resource can be queried directly using the object structure (i.e., using the ontology)

Outline The Sparrow ToolkitThe Sparrow Toolkit Semantic RegistrationSemantic Registration Ontology-Driven Structural TransformationOntology-Driven Structural Transformation

Example Structural Types (XML) S 1 (life stage property) S 2 (mortality rate for period) S 2 (mortality rate for period) P1P1 P2P2 P4P4 P3P3 P5P5 root population = (sample)* elem sample= (meas, lsp) elem meas= (cnt, acc) elem cnt= xsd:integer elem acc= xsd:double elem lsp= xsd:string 44, Eggs … root cohortTable= (measurement)* elem measuremnt= (phase, obs) elem phase= xsd:string elem obs= xsd:integer Eggs 44,000 … structType(P 2 ) structType(P 3 )

Example Semantic Types Portion of SEEK measurement ontology MeasContext ObservationEntityMeasProperty hasContext 0:* 1:1 appliesTo hasProperty 0:* Accuracy Qualifier Ecological Property Abundance Count LifeStage Property Numeric Value Spatial Location hasLocation hasCount 1:1 hasValue 1:1 itemMeasured 1:*

Example Semantic Types Semantic types for P2 and P3 S 1 (life stage property) S 2 (mortality rate for period) S 2 (mortality rate for period) P1P1 P2P2 P4P4 P3P3 P5P5 Observation semType(P 3 ) MeasContext hasContext 1:1 appliesTo LifeStage Property 1:1 Abundance Count itemMeasured Number Value hasCount 1:1 semType(P 2 ) ⊑ Accuracy Qualifier hasProperty 1:1 hasValue 1:1

The Ontology-Driven Framework Source Service Source Service Target Service Target Service PsPs PtPt Semantic Type P s Semantic Type P t Structural Type P t Structural Type P s Desired Connection Compatible (⊑)(⊑) Registration Mapping (Output) Registration Mapping (Input) Ontologies (OWL)

The Ontology-Driven Framework Source Service Source Service Target Service Target Service PsPs PtPt Semantic Type P s Semantic Type P t Structural Type P t Structural Type P s Desired Connection Compatible (⊑)(⊑) Registration Mapping (Output) Registration Mapping (Input) Correspondence Ontologies (OWL)

The Ontology-Driven Framework Source Service Source Service Target Service Target Service PsPs PtPt Semantic Type P s Semantic Type P t Structural Type P t Structural Type P s Desired Connection Compatible (⊑)(⊑) Registration Mapping (Output) Registration Mapping (Input) Correspondence Generate (Ps)(Ps) (Ps)(Ps) Ontologies (OWL) Transformation

Datasets used in the Prototype genusspeciescountlatlon 'Acromyrmex''versicolor‘ … genusspeciescntltln Camponotus‘‘festinatus‘ … Antweb South Africa Museum mbcntcfcntlatlon … “faked” genus1species1genus2species2 ManicaparasiticaManicabradleyi … Dulosis Parasite/ Host