EEG/MEG source reconstruction

Slides:



Advertisements
Similar presentations
J. Daunizeau Institute of Empirical Research in Economics, Zurich, Switzerland Brain and Spine Institute, Paris, France Bayesian inference.
Advertisements

EEG/MEG source reconstruction in SPM5
Bayesian inference Lee Harrison York Neuroimaging Centre 01 / 05 / 2009.
EEG-MEG source reconstruction
Bayesian inference Jean Daunizeau Wellcome Trust Centre for Neuroimaging 16 / 05 / 2008.
Dynamic causal Modelling for evoked responses Stefan Kiebel Wellcome Trust Centre for Neuroimaging UCL.
EEG/MEG Source Localisation
Hierarchical Models and
The General Linear Model Christophe Phillips Cyclotron Research Centre University of Liège, Belgium SPM Short Course London, May 2011.
SPM 2002 Experimental Design Daniel Glaser Institute of Cognitive Neuroscience, UCL Slides from: Rik Henson, Christian Buchel, Karl Friston, Chris Frith,
STATISTICAL ANALYSIS AND SOURCE LOCALISATION
SPM for EEG/MEG Guillaume Flandin
Bayesian models for fMRI data
Group analyses of fMRI data Methods & models for fMRI data analysis in neuroeconomics November 2010 Klaas Enno Stephan Laboratory for Social and Neural.
M/EEG forward problem & solutions Brussels 2011 SPM-M/EEG course January 2011 C. Phillips, Cyclotron Research Centre, ULg, Belgium.
MEG/EEG Inverse problem and solutions In a Bayesian Framework EEG/MEG SPM course, Bruxelles, 2011 Jérémie Mattout Lyon Neuroscience Research Centre ? ?
OverviewOverview Motion correction Smoothing kernel Spatial normalisation Standard template fMRI time-series Statistical Parametric Map General Linear.
Overview Contrast in fMRI v contrast in MEG 2D interpolation 1 st level 2 nd level Which buttons? Other clever things with SPM for MEG Things to bear in.
The M/EEG inverse problem
Image Warping using Empirical Bayes John Ashburner & Karl J. Friston. Wellcome Department of Cognitive Neurology, London, UK.
Bayesian models for fMRI data
Bayesian models for fMRI data Methods & models for fMRI data analysis 06 May 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
J. Daunizeau Wellcome Trust Centre for Neuroimaging, London, UK Institute of Empirical Research in Economics, Zurich, Switzerland Bayesian inference.
Group analyses of fMRI data Methods & models for fMRI data analysis 28 April 2009 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Group analyses of fMRI data Methods & models for fMRI data analysis 26 November 2008 Klaas Enno Stephan Laboratory for Social and Neural Systems Research.
Preprocessing II: Between Subjects John Ashburner Wellcome Trust Centre for Neuroimaging, 12 Queen Square, London, UK.
Source Localization for EEG/MEG Stavroula Kousta Martin Chadwick Methods for Dummies 2007.
General Linear Model & Classical Inference Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM M/EEGCourse London, May.
Source localization for EEG and MEG Methods for Dummies 2006 FIL Bahador Bahrami.
Source localization MfD 2010, 17th Feb 2010
DTU Medical Visionday May 27, 2009 Generative models for automated brain MRI segmentation Koen Van Leemput Athinoula A. Martinos Center for Biomedical.
SENSOR LEVEL ANALYSIS AND SOURCE LOCALISATION in M/EEG METHODS FOR DUMMIES Mrudul Bhatt & Wenjun Bai.
Generative Models of M/EEG: Group inversion and MEG+EEG+fMRI multimodal integration Rik Henson (with much input from Karl Friston)
Hierarchical Bayesian Modeling (HBM) in EEG and MEG source analysis Carsten Wolters Institut für Biomagnetismus und Biosignalanalyse, Westfälische Wilhelms-Universität.
Group analyses of fMRI data Methods & models for fMRI data analysis November 2012 With many thanks for slides & images to: FIL Methods group, particularly.
EEG/MEG Source Localisation SPM Course – Wellcome Trust Centre for Neuroimaging – Oct ? ? Jérémie Mattout, Christophe Phillips Jean Daunizeau Guillaume.
EEG/MEG source reconstruction
Contrasts & Inference - EEG & MEG Himn Sabir 1. Topics 1 st level analysis 2 nd level analysis Space-Time SPMs Time-frequency analysis Conclusion 2.
Wellcome Dept. of Imaging Neuroscience University College London
Dynamic Causal Modelling for EEG and MEG
Bayesian models for fMRI data Methods & models for fMRI data analysis November 2011 With many thanks for slides & images to: FIL Methods group, particularly.
Multimodal Brain Imaging Wellcome Trust Centre for Neuroimaging, University College, London Guillaume Flandin, CEA, Paris Nelson Trujillo-Barreto, CNC,
Bayesian inference Lee Harrison York Neuroimaging Centre 23 / 10 / 2009.
Variance components Wellcome Dept. of Imaging Neuroscience Institute of Neurology, UCL, London Stefan Kiebel.
M/EEG: Statistical analysis and source localisation Expert: Vladimir Litvak Mathilde De Kerangal & Anne Löffler Methods for Dummies, March 2, 2016.
Mixture Models with Adaptive Spatial Priors Will Penny Karl Friston Acknowledgments: Stefan Kiebel and John Ashburner The Wellcome Department of Imaging.
Guillaume Flandin Wellcome Trust Centre for Neuroimaging University College London SPM Course Zurich, February 2008 Bayesian Inference.
MEG Analysis in SPM Rik Henson (MRC CBU, Cambridge) Jeremie Mattout, Christophe Phillips, Stefan Kiebel, Olivier David, Vladimir Litvak,... & Karl Friston.
Bayesian Inference in SPM2 Will Penny K. Friston, J. Ashburner, J.-B. Poline, R. Henson, S. Kiebel, D. Glaser Wellcome Department of Imaging Neuroscience,
General Linear Model & Classical Inference London, SPM-M/EEG course May 2016 Sven Bestmann, Sobell Department, Institute of Neurology, UCL
1 Jean Daunizeau Wellcome Trust Centre for Neuroimaging 23 / 10 / 2009 EEG-MEG source reconstruction.
Imaging Source Reconstruction in the Bayesian Framework
Variational Bayesian Inference for fMRI time series
The general linear model and Statistical Parametric Mapping
M/EEG Analysis in SPM Rik Henson (MRC CBU, Cambridge)
Keith Worsley Keith Worsley
Spatio-Temporal Clustering
Generative Models of M/EEG:
'Linear Hierarchical Models'
Linear Hierarchical Modelling
The general linear model and Statistical Parametric Mapping
SPM2: Modelling and Inference
Dynamic Causal Modelling for M/EEG
Hierarchical Models and
Bayesian inference J. Daunizeau
M/EEG Statistical Analysis & Source Localization
Bayesian Inference in SPM2
Mixture Models with Adaptive Spatial Priors
WellcomeTrust Centre for Neuroimaging University College London
DCM Demo – Model Specification, Inversion and 2nd Level Inference
Presentation transcript:

EEG/MEG source reconstruction Jérémie Mattout / Christophe Phillips / Karl Friston Wellcome Dept. of Imaging Neuroscience, Institute of Neurology, UCL, London

Estimating brain activity from scalp electromagnetic data Sources MEG data Source Reconstruction ‘Equivalent Current Dipoles’ (ECD) ‘Imaging’ EEG data

Components of the source reconstruction process Source model ‘ECD’ ‘Imaging’ Forward model Registration Inverse method Data Anatomy

Components of the source reconstruction process Source model Registration Forward model Inverse solution

Source model Compute transformation T Apply inverse transformation T-1 Individual MRI Templates Apply inverse transformation T-1 Individual mesh input functions output Individual MRI Template mesh spatial normalization into MNI template inverted transformation applied to the template mesh individual mesh

Registration Rigid transformation (R,t) Individual MRI space fiducials Individual sensor space fiducials Rigid transformation (R,t) input functions output sensor locations fiducial locations (in both sensor & MRI space) individual MRI registration of the EEG/MEG data into individual MRI space registrated data rigid transformation

head tissue properties Foward model Individual MRI space Model of the head tissue properties Compute for each dipole p + K n Forward operator functions input single sphere three spheres overlapping spheres realistic spheres output sensor locations individual mesh forward operator K BrainStorm

Inverse solution (1) - General principles General Linear Model 1 dipole source per location Cortical mesh Y = KJ+ E [nxt] [nxp] [pxt] n : number of sensors p : number of dipoles t : number of time samples Under-determined GLM J : min( ||Y – KJ||2 + λf(J) ) ^ Regularized solution data fit priors

Inverse solution (2) - Parametric empirical Bayes 2-level hierarchical model Y = KJ + E1 J = 0 + E2 E2 ~ N(0,Cp) E1 ~ N(0,Ce) Gaussian variables with unknown variance Gaussian variables with unknown variance Sensor level Source level Ce = 1.Qe1 + … + q.Qeq Cp = λ1.Qp1 + … + λk.Qpk Linear parametrization of the variances Q: variance components (,λ): hyperparameters

+ Inverse solution (3) - Parametric empirical Bayes Qe1 , … , Qeq Bayesian inference on model parameters Model M Qe1 , … , Qeq Qp1 , … , Qpk + J K ,λ Inference on J and (,λ) Maximizing the log-evidence F = log( p(Y|M) ) =  log( p(Y|J,M) ) + log( p(J|M) ) dJ data fit priors Expectation-Maximization (EM) J = CJKT[Ce + KCJ KT]-1Y ^ E-step: maximizing F wrt J MAP estimate M-step: maximizing of F wrt (,λ) Ce + KCJKT = E[YYT] ReML estimate

Inverse solution (4) - Parametric empirical Bayes Bayesian model comparison Model evidence Relevance of model M is quantified by its evidence p(Y|M) maximized by the EM scheme Model comparison Two models M1 and M2 can be compared by the ratio of their evidence B12 = p(Y|M1) p(Y|M2) Bayes factor Model selection using a ‘Leaving-one-prior-out-strategy‘

Inverse solution (5) - implementation input functions output iterative forward and inverse computation ECD approach preprocessed data - forward operator individual mesh priors - compute the MAP estimate of J compute the ReML estimate of (,λ) interpolate into individual MRI voxel-space inverse estimate model evidence

EEG/MEG preprocessed data Conclusion - Summary Data space MRI space Registration Forward model EEG/MEG preprocessed data PEB inverse solution SPM