Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics:

Slides:



Advertisements
Similar presentations
UHECRs & GRBs Eli Waxman Weizmann Institute, ISRAEL.
Advertisements

ICECUBE & Limits on neutrino emission from gamma-ray bursts IceCube collaboration Journal Club talk Alex Fry.
Lorenzo Perrone (University & INFN of Lecce) for the MACRO Collaboration TAUP 2001 Topics in Astroparticle and underground physics Laboratori Nazionali.
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
High Energy Neutrinos from Astrophysical Sources Dmitry Semikoz UCLA, Los Angeles & INR, Moscow.
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Ultrahigh Energy Cosmic Ray Nuclei and Neutrinos
SLAC, June 23 rd Dark Matter in Galactic Gamma Rays Marcus Ziegler Santa Cruz Institute for Particle Physics Gamma-ray Large Area Space Telescope.
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
ANTARES aims, status and prospects Susan Cartwright University of Sheffield.
ANITA Meeting UC Irvine 23 November 2002 EHE Cosmic Rays, EHE Neutrinos and GeV- TeV Gamma rays David Kieda University of Utah Department of Physics.
The positron excess and supersymmetric dark matter Joakim Edsjö Stockholm University
Radio Quiet AGNs as possible sources of UHECRs Based on work by Asaf Pe’er (STScI), Kohta Murase (Yukawa Inst.) & Peter Mészáros (PSU) October 2009 Phys.
Science Potential/Opportunities of AMANDA-II  S. Barwick ICRC, Aug 2001 Diffuse Science Point Sources Flavor physics Transient Sources 
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
The ANTARES Neutrino Telescope Mieke Bouwhuis 27/03/2006.
Significant enhancement of Bino-like dark matter annihilation cross section due to CP violation Yoshio Sato (Saitama University) Collaborated with Shigeki.
Cosmic Rays Discovery of cosmic rays Local measurements Gamma-ray sky (and radio sky) Origin of cosmic rays.
LHC ~E -2.7 ~E -3 ankle 1 part km -2 yr -1 knee 1 part m -2 yr -1 T. Gaisser 2005 Nature accelerates particles 10 7 times the energy of LHC! where?how?
High-energy emission from the tidal disruption of stars by massive black holes Xiang-Yu Wang Nanjing University, China Collaborators: K. S. Cheng(HKU),
Quintessino model and neutralino annihilation to diffuse gamma rays X.J. Bi (IHEP)
Did Dark Matter Annihilations Reionize The Universe? Dan Hooper Fermilab Theoretical Astrophysics Group FNAL Particle Astrophysics Seminar June 1, 2009.
E. MignecoErice ISCRA, July Introduction to High energy neutrino astronomy Erice ISCRA School 2004 Emilio Migneco.
Spåtind Norway P.O.Hulth Cosmic Neutrinos and High Energy Neutrino Telescopes Spåtind 2006 lecture 1 Per Olof Hulth Stockholm University
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
KM3NET 24 September 2004 Gerard van der Steenhoven (NIKHEF)
Petten 29/10/99 ANTARES an underwater neutrino observatory Contents: – Introduction – Neutrino Astronomy and Physics the cosmic ray spectrum sources of.
The Particle Universe (continued) Joakim Edsjö Stockholm University Joakim Edsjö Stockholm University
Fermi: Highlights of GeV Gamma-ray Astronomy Dave Thompson NASA GSFC On behalf of the Fermi Gamma-ray Space Telescope Large Area Telescope Collaboration.
Dark Matter Particle Physics View Dmitri Kazakov JINR/ITEP Outline DM candidates Direct DM Search Indirect DM Search Possible Manifestations DM Profile.
IceCube non-detection of GRB Neutrinos: Constraints on the fireball properties Xiang-Yu Wang Nanjing University, China Collaborators : H. N. He, R. Y.
SEARCHING FOR A DIFFUSE FLUX OF ULTRA HIGH-ENERGY EXTRATERRESTRIAL NEUTRINOS WITH ICECUBE Henrik Johansson, for the IceCube collaboration LLWI H.
1 Physics of GRB Prompt emission Asaf Pe’er University of Amsterdam September 2005.
Space-based Gamma-ray Astronomy Liz Hays (NASA Goddard Space Flight Center)
Astrophysics of high energy cosmic-rays Eli Waxman Weizmann Institute, ISRAEL “New Physics”: talk by M. Drees Bhattacharjee & Sigl 2000.
Mar 9, 2005 GZK Neutrinos Theory and Observation D. Seckel, Univ. of Delaware.
Neutrino Point Sources (Looking for) (with Underground Detectors) THE HIGTE ST ENERGY COSMIC RAYS AND THEIR SOURCES: Moscow May 21-23, 2004 S.P. Mikheyev.
Summary of indirect detection of neutralino dark matter Joakim Edsjö Stockholm University
Lepton - Photon 01 Francis Halzen the sky the sky > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist Fly’s.
Paul Sommers Fermilab PAC Nov 12, 2009 Auger Science South and North.
AMANDA. Latest Results of AMANDA Wolfgang Rhode Universität Dortmund Universität Wuppertal for the AMANDA Collaboration.
High Energy Cosmic Rays Eli Waxman Weizmann Institute, ISRAEL.
Active Galactic Nuclei & High Energy Neutrino Astronomy 黎卓 北京大学 >TeV JUNO Workshop, IHEP, 2015/7/10.
April 23, 2009PS638 Tom Gaisser 1 Neutrinos from AGN & GRB Expectations for a km 3 detector.
1 Additional observable evidences of possible new physics Lecture from the course “Introduction to Cosmoparticle Physics”
L EPTONIC NEUTRINOS Arunava Bhadra High Energy & Cosmic Ray Research Ctr. North Bengal University My collaborators: Prabir Banik and Biplab Bijay.
Alexander Kappes Erlangen Centre for Astroparticle Physics for the ANTARES collaboration IAU GA, SpS 10, Rio de Janeiro, Aug Status of Neutrino.
Dan Hooper Theoretical Astrophysics Group Fermi National Laboratory Theoretical Particle-Astrophysics At Fermilab Annual DOE Review May.
Gamma-rays, neutrinos and cosmic rays from microquasars Gustavo E. Romero (IAR – CONICET & La Plata University, Argentina)
Introduction to the High Energy Astrophysics Introductory lecture.
260404Astroparticle Physics1 Astroparticle Physics Key Issues Jan Kuijpers Dep. of Astrophysics/ HEFIN University of Nijmegen.
Collider searchIndirect Detection Direct Detection.
The Universe >100 MeV Brenda Dingus Los Alamos National Laboratory.
PHY418 Particle Astrophysics
Neutrino Particle Astrophysics John CARR Centre de Physique des Particules de Marseille / IN2P3 / CNRS.
Astroparticle physics with large neutrino detectors  Existing detectors  Physics motivation  Antares project  KM3NeT proposal M. de Jong.
Low scale gravity black holes at LHC Enikő Regős ( CERN )
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
Extreme Astrophysics the the > 10 GeV photon energy < cm wavelength > 10 8 TeV particles exist > 10 8 TeV particles exist they should.
Astrophysics of the Highest Energy Cosmic Rays Paul Sommers Cracow, Poland January 10, 2004.
Keegan Stoner Columbia High School. dark matter Obeying Inverse Square Law Outer stars orbit too fast what we should seewhat we actually see.
Astroparticle Physics (3/3)
UHE Cosmic Rays from Local GRBs Armen Atoyan (U.Montreal) collaboration: Charles Dermer (NRL) Stuart Wick (NRL, SMU) Physics at the End of Galactic Cosmic.
Roma International Conference on Astroparticle Physics Rome, May 2013 Juan de Dios Zornoza (IFIC – Valencia) in collaboration with G. Lambard (IFIC) on.
Imaging the Neutrino Universe with AMANDA and IceCube
Search for Dark Matter physics 805 fall 2008.
Neutrinos as probes of ultra-high energy astrophysical phenomena
Particle Acceleration in the Universe
Neutrino astrophysics
Presentation transcript:

Examples of Science Generic fluxes associated with cosmic rays Generic fluxes associated with cosmic rays Astrophysics: gamma ray bursts Astrophysics: gamma ray bursts Particle physics: cold dark matter search Particle physics: cold dark matter search

Nature’s Particle Accelerators Electromagnetic Processes:Electromagnetic Processes: –Synchrotron Emission E   (E e /m e c 2 ) 3 BE   (E e /m e c 2 ) 3 B –Inverse Compton Scattering E f ~ (E e /m e c 2 ) 2 E iE f ~ (E e /m e c 2 ) 2 E i –Bremmstrahlung E  ~ 0.5 E eE  ~ 0.5 E e Hadronic CascadesHadronic Cascades – p +   ± +  o +…  e ± +  +  +… – p + p  ± +  o +…  e ± +  +  +…

High Energy Gamma-Ray Astrophysics Typical Multiwavelength Spectrum from High Energy  -ray source [ Energy Emitted] [ Photon Energy]

Spinning Neutron Star Fills Nebula with Energetic Electrons => Synchrotron Radiation and Inverse Compton Scattering

Active Galactic Nuclei Massive Black Hole Accelerates Jet of Particles to Relativistic Velocities => Synchrotron Emission and Inverse Compton and/or Proton Cascades

Challenge I: Acceleration R B shock velocity (V = e  = v/c   = boosted energy from cosmic accelerator 

Energy in extra-galactic cosmic rays ~ 3x10 37 erg/s or erg/yr per (Mpc) 3 3x10 39 erg/s per galaxy 3x10 44 erg/s per active galaxy 2x10 52 erg per gamma ray burst 1 TeV = 1.6 erg

brightest known sources match IF equal energy in protons and electrons (photons) AGN (steady):  ~ few requires L>10 47 erg/s Few, brightest AGN GRBs (transient):  ~ 300 requires L>10 51 erg/s Average L  ~10 52 erg/s equal energy in neutrinos?

some definitions flux F = dN/dE (particles cm -2 s -1 ) fluency f = E dN/dE (erg cm -2 s -1 ) luminosity L = f x 4  d 2 (erg s -1 )

Point Sources Signal: Background (atmos. ’ s): For TeV:

Cosmological sources: Most Powerful Cosmological sources: AGN (Steady) GRBs (~100s transient) 1.~1 km 2 detector 2.Same UHE CR “ suspects ”

Challenge II: Propagation (GZK) >10 20 eV proton: E <100 Mpc Bright AGN (Radio galaxies)- too far  GRBs Does the spectrum support GZK?

Model Fly’s Eye fit for Galactic heavy (<10 19 eV): J G ~E X-Galactic protons: Generation spectrum (shock acceleration): Generation rate: Redshift evolution ~ SFR [EW 95]

Model vs. Data X-G Model: [Bahcall & EW 03] Ruled out 7  55

Conclusions are Robust

CR Conclusions Yakutsk, Fly’s Eye, HiRes: Consistent with XG protons: + GZK Robust; Consistent with GRB model predictions AGASA (25% of total exposure): Consistent below eV Excess above eV: 2.2+/ observed New source/ New physics/ 25% energy Local inhomogeneity over-estimate Stay tuned for Auger (Hybrid) ??

diffuse flux flux = velocity x density flux = c/4  x density, for isotropic flux --> in energy density E dN/dE dE = c/4  x  E E dN/dE = A E  cm -2 s -1 sr -1 (  = -1)

diffuse background Signal: Background (atmos. ’ s): Waxman-Bahcall bound ~ 1km 2 detector --> 50 events/yr

n Flux Bound Observed J CR (>10 19 eV) For Sources with   p < 1: Strongest know z evolution (QSO, SFR): collect ’s beyond GZK [EW & Bahcall 99, Bahcall & EW 01]

  p for known sources pp ’’ n ++ e+e+ e-e- 

Antares Nemo

Neutrinos from GRB: an example

Gamma-ray Bursts M on ~1 Solar Mass BH Relativistic Outflow e - acceleration in Collisionless shocks e - Synchrotron MeV  ’s L  ~10 52 erg/s  ~300 [Meszaros, ARA&A 02]

GammaRayBurst Photons and protons Photons and protons coexist in internal shocks External shocks External shocks

1997 BATSE: May

NUMEROLOGY L  = erg/s R 0 = 100 km E  = 1 MeV  t = 1-10 msec  = 300 t H = years dE/dt = 4x10 44 erg Mpc -3 yr -1 P detected = E 0.8 (in TeV)  p  = cm2 for p+   n+  = 0.2 = 0.2

GRB1FRAMES Fireball Frame Observer Frame  ~ E =  E' ~ 1 MeV R =  R' d  R = c  t = R 0 with R 0 = R' (t = 0) observed 1 msec RRRR RR' c v

grb kinematics R km cos  = v/c  = [1- ] -1/2 v 2 __ c  t = = (R - Rcos  )  R __ c 1_c1_c R __ c R __ 2c v __ c v 2 __ c 2 ( 1 - ) =  t obs  E obs  E R __ 2c 1 __  2 R   v c ~-~- ~-~- ~-~- ~-~- ~-~-

GRB3 Pion (neutrino) production when protons and photons coexist p  n  + neutrinos n0n0n0n0 gamma rays E' p > m 2  - m 2 p _________ 4E'  4E'  E p > 1.4 x 10 4 TeV E = 1/4 E p 1/20 E p 0.7 PeV ~_~_

Fraction of GRB energy converted into pion (neutrino) production f  =  x p   15% -1 p  = n   p  -1 p  = n   p  e synchro/ICompton  (L) (L) (L) (L) p pions (L CR )  R' ___ p  p  ~_ GRB4fireball

GRB2 Photon Density in the Fireball n  = = U'  ___ E'  ___  L   t/  L   t/ ______ 4  R' 2  R' R' =  2 c  t  R' =  c  t note: for  = 1 (no fireball) optical depth of photons is photons is  opt = = R 0 n   Th ~ R 0 __ Th Th

U___ E c__ 4  1___ E E dE__dt GRB 5  = = ( 1/2 f  t H ) charged  only N events = P survived P detected  N events = P survived P detected  20 km -2 yr -1 L CR LLLL ~_ ~_ Neutrino flux from GRB fireballs c__ 4 

GRB 6 NUMEROLOGY L  = erg/s R 0 = 100 km E  = 1 MeV  t = 1-10 msec  = 300  > = 1/5  > = 1/5  p  = cm 2 t H = years dE/dt = 4x10 44 erg Mpc -3 yr -1 P detected = E 0.8 (in TeV)

Search for HE from GRB

Correlations to GRB 88 BATSE bursts in 1997 Background cuts can be loosened considerably  high signal efficiency Combined data give sensitivity ~ prediction! ~ prediction!

Marriage of Astronomy and Physics Astronomy: new window on the Universe!Astronomy: new window on the Universe! “You can see a lot by looking” “You can see a lot by looking” Physics:Physics: search for dark matter search for topological defects and cosmological remnants search for monopoles measure the high-energy neutrino cross section (TeV-scale gravity?) (TeV-scale gravity?) cosmic ray physics: 150 atmospheric nus/day array with EeV sensitivity array with EeV sensitivity test special and general relativity with new precision

Relic density – simple approach Decoupling occurs when  < H We have

The MSSM – general The Lightest Supersymmetric Particle (LSP) Usually the neutralino. If R-parity is conserved, it is stable. The Neutralino –  Gaugino fraction 1.Select MSSM parameters 2.Calculate masses, etc 3.Check accelerator constraints 4.Calculate relic density <   h 2 < 0.5 ? 6.Calculate fluxes, rates,... Calculation done with

LEP  h 2 <  h 2 > 1 Low sampling The m  -Z g parameter space Higgsinos Mixed Gauginos

WIMP search strategies Direct detectionDirect detection Indirect detection: –neutrinos from the Earth/Sun –antiprotons from the galactic halo –positrons from the galactic halo –gamma rays from the galactic halo –gamma rays from external galaxies/halos –synchrotron radiation from the galactic center / galaxy clusters –...Indirect detection: –neutrinos from the Earth/Sun –antiprotons from the galactic halo –positrons from the galactic halo –gamma rays from the galactic halo –gamma rays from external galaxies/halos –synchrotron radiation from the galactic center / galaxy clusters –... Direct detectionDirect detection Indirect detection: –neutrinos from the Earth/Sun –antiprotons from the galactic halo –positrons from the galactic halo –gamma rays from the galactic halo –gamma rays from external galaxies/halos –synchrotron radiation from the galactic center / galaxy clusters –...Indirect detection: –neutrinos from the Earth/Sun –antiprotons from the galactic halo –positrons from the galactic halo –gamma rays from the galactic halo –gamma rays from external galaxies/halos –synchrotron radiation from the galactic center / galaxy clusters –...

Direct detection - general principles WIMP + nucleus  WIMP + nucleus Measure the nuclear recoil energy Suppress backgrounds enough to be sensitive to a signal, or... Search for an annual modulation due to the Earth’s motion around the Sun

Edelweiss June 2002 Most likely DAMA point. Excluded at 99.8% CL

Direct detection – current limits Spin-independent scattering Spin-dependent scattering Direct detection experiments have started exploring the MSSM parameter space!

Neutralino capture and annihilation Sun  Earth Detector Freese, ’86; Krauss, Srednicki & Wilczek, ’86 Gaisser, Steigman & Tilav, ’86 Silk, Olive and Srednicki, ’85 Gaisser, Steigman & Tilav, ’86    velocity distribution  scatt  capture  annihilation interactions int.  int. interactions hadronization

Indirect detection for cyclists e.g m 2 -telescope searches for 500 GeV WIMP > LHC limit 1.  - flux 300 km/s   =   v =   =   v = 2.4 x 10 4 [ ]cm -2 s Solar cross section   = n  =  (  N)   = n  =  (  N) = [1.2x10] cm 2 M  __ m N (G F m N 2 ) 2 ~ G F 2 ___ m Z 2 M Z 2 ___ m H GeV ________ m z 500 GeV ________ m z 0.4 GeV cm -3 = 8 x [ ] cm -3

N  = capture rate = annihilation rate _  WW  250 GeV 500 GeV 4. Number of muon-neutrinos N  = 2 x 0.1 N  N  = 2 x 0.1 N  Leptonic BR~0.1 N  =     = 3 x s Capture rate by the sun

5.   = = 2 x cm -2 s -1 1 A.U. 5.5 x cm # events = area x   x  ice x   x R  10 4 m 2   = cm 2 = 2.5 x cm 2   = cm 2 = 2.5 x cm 2 E___GeV R  = 5m = 625m (E  0.5 E ) R  = 5m = 625m (E  0.5 E ) E  ___GeV ~_ N  ____ 4  d 2 # events = 10 per year

AMANDA limit – 10 strings only Baikal

DirectDetection ( Zeppelin4/Genius ) Black: out Green: yes Blue: no IceCubevs

MSSM parameter space Future probed regions I Direct detection Genius/Cresst Earth, km 3 Sun, km 3 IceCubeIceCube

Limits:  flux from the Earth/Sun EarthSun

Flux from Earth/Sun and future GENIUS/CRESST limits EarthSun