Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, 30.3.06 E15.

Slides:



Advertisements
Similar presentations
R&D on Liquid-Scintillator Detectors R&D and Astroparticle Physics Lisbon, January 8th 2008 Michael Wurm Technische Universität München.
Advertisements

Analysis of the Optical Properties of Organic Liquid Scintillator in LENA DPG-Tagung in Heidelberg M. Wurm, T. Marrodán Undagoitia, F. v. Feilitzsch,
LENA Scintillator Characterization Transregio 27 SFB-Tage in Heidelberg 9/10. Juli 2009 Michael Wurm.
Neutrinos Louvain, February 2005 Alan Martin Arguably the most fascinating of the elementary particles. Certainly they take us beyond the Standard Model.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
The Diffuse Supernova Neutrino Background Louie Strigari The Ohio State University Collaborators: John Beacom, Manoj Kaplinghat, Gary Steigman, Terry Walker,
Low Energy Neutrino Astrophysics
Past Experience of reactor neutrino experiments Yifang Wang Institute of High Energy Physics, Beijing Nov. 28, 2003.
IceCube IceCube Neutrino-Trigger network of optical telescopes Anna Franckowiak 1, Timo Griesel 2, Lutz Koepke 2, Marek Kowalski 1, Thomas Kowarik 2, Anna.
Comparing Large Underground Neutrino Detector Technologies: Liquid Argon, Liquid Scintillator, and Water Cherenkov John G. Learned University of Hawaii.
Sergio Palomares-Ruiz November 17, 2008 Dark Matter Annihilation/Decay Scenarios Novel Searches for Dark Matter with Neutrino Telescopes Columbus, OH (USA)
Prospects for 7 Be Solar Neutrino Detection with KamLAND Stanford University Department of Physics Kazumi Ishii.
LENA Low Energy Neutrino Astrophysics F von Feilitzsch, L. Oberauer, W. Potzel Technische Universität München LENA Delta.
A Search for Point Sources of High Energy Neutrinos with AMANDA-B10 Scott Young, for the AMANDA collaboration UC-Irvine PhD Thesis:
Diffuse supernova neutrino flux Cecilia Lunardini Arizona State University And RIKEN BNL Research Center UCLA, September 2009.
Diffuse supernova neutrinos at underground laboratories Cecilia Lunardini Arizona State University And RIKEN BNL Research Center INT workshop “Long-Baseline.
21-25 January 2002 WIN 2002 Colin Okada, LBNL for the SNO Collaboration What Else Can SNO Do? Muons and Atmospheric Neutrinos Supernovae Anti-Neutrinos.
MACRO Atmospheric Neutrinos Barry Barish 5 May 00 1.Neutrino oscillations 2.WIMPs 3.Astrophysical point sources.
Neutrino emission =0.27 MeV E=0.39,0.86 MeV =6.74 MeV ppI loss: ~2% ppII loss: 4% note: /Q= 0.27/26.73 = 1% ppIII loss: 28% Total loss: 2.3%
O Reactor antineutrinos in the world V. Chubakov 1, F. Mantovani 1, B. Ricci 1, J. Esposito 2, L. Ludhova 3 and S. Zavatarelli 4 1 Dip. di Fisica, Università.
A feasibility study for the detection of SuperNova explosions with an Undersea Neutrino Telescope A. Leisos, A. G. Tsirigotis, S. E. Tzamarias Physics.
Neutrinos as Probes: Solar-, Geo-, Supernova neutrinos; Laguna
LENA Low Energy Neutrino Astrophysics L. Oberauer, Technische Universität München LENA Delta EL SUD Meeting.
Günter Sigl, Astroparticules et Cosmologie, ParisILIAS/N5-N6 meeting, Paris, January 23-24, 2006  Supernovae as neutrino and gravitational wave sources.
Prospects of the search for neutrino bursts from Supernovae with Baksan Large Volume Scintillation Detector V.B. Petkov Institute for Nuclear Research.
A. Blondel, M.Campanelli, M.Fechner Energy measurement in quasi-elastics Unfolding detector and physics effects Alain Blondel Mario Campanelli Maximilien.
Physics Potential of the LENA Detector Epiphany Conference Cracow January 8, 2010 Michael Wurm Technische Universität München.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
1 LENA Low Energy Neutrino Astronomy NOW 2010, September 6, 2010 Lothar Oberauer, TUM, Physik-Department.
KamLAND Experiment Kamioka Liquid scintillator Anti-Neutrino Detector - Largest low-energy anti-neutrino detector built so far - Located at the site of.
LENA – a liquid scintillator detector for Low Energy Neutrino Astronomy and proton decay Marianne Göger-Neff NNN07 TU MünchenHamamatsu Detector outline.
LAGUNA Large Apparatus for Grand Unification and Neutrino Astrophysics Launch meeting, Heidelberg, March 2007, Lothar Oberauer, TUM.
KamLAND : Studying Neutrinos from Reactor Atsuto Suzuki KamLAND Collaboration KEK : High Energy Accelerator Research Organization.
SNS2 Workshop August 28-29, 2003 Richard Talaga, Argonne1 Calibration of the OMNIS-LPC Supernova Neutrino Detector Outline –OMNIS Experiment and Detectors.
The shockwave impact upon the Diffuse Supernova Neutrino Background GDR Neutrino, Ecole Polytechnique Sébastien GALAIS S. Galais, J. Kneller, C. Volpe.
Present and future detectors for Geo-neutrinos: Borexino and LENA Applied Antineutrino Physics Workshop APC, Paris, Dec L. Oberauer, TU München.
LSc development for Solar und Supernova Neutrino detection 17 th Lomonosov conference, Moscow, August 2015 L. Oberauer, TUM.
TAUP Searches for nucleon decay and n-n oscillation in Super-Kamiokande Jun Kameda (ICRR, Univ. of Tokyo) for Super-Kamiokande collaboration Sep.
GADZOOKS! project at Super-Kamiokande M.Ikeda (Kamioka ICRR, U.of Tokyo) for Super-K collaboration 1 Contents GADZOOKS! project Supernova.
L. Oberauer, Paris, June 2004   Measurements at Reactors Neutrino 2004 CdF, Paris, June chasing the missing mixing angle.
MC SIMULATIONS TERRESTRIAL NEUTRINOS SOLAR NEUTRINOS Detection Channels - neutrino-electron scattering → Compton-like shoulder - CC reaction on 13 C (1%
Application of neutrino spectrometry
C.Vigorito, University & INFN Torino, Italy 30 th International Cosmic Ray Conference Merida, Mexico Search for neutrino bursts from Gravitational stellar.
1 水质契仑科夫探测器中的中子识别 张海兵 清华大学 , 南京 First Study of Neutron Tagging with a Water Cherenkov Detector.
The effect of neutrinos on the initial fireballs in GRB ’ s Talk based on astro-ph/ (HK and Ralph Wijers) Hylke Koers NIKHEF & University of Amsterdam.
Neutrinos from the sun, earth and SN’s: a brief excursion Aldo IFAE 2006 Pavia April 19 th.
Determining the Neutrino Hierarchy From a Galactic Supernova David Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s Nova” 7,500 light years (2.3 kPc)
Determining the neutrino hierarchy from a galactic supernova using a next-generation detector David M. Webber APS April Meeting May 3, 2011 SN 1572 “Tycho’s.
Potential Neutrino Signals from Galactic  -Ray Sources Alexander Kappes, Christian Stegmann University Erlangen-Nuremberg Felix Aharonian, Jim Hinton.
  Measurement with Double Chooz IDM chasing the missing mixing angle e  x.
Caren Hagner – LENA: Low Energy Neutrino Astronomy The LAGUNA Liquid Scintillator Detector Caren Hagner (Hamburg University) for the LAGUNA-LENA.
CP phase and mass hierarchy Ken-ichi Senda Graduate University for Advanced Studies (SOKENDAI) &KEK This talk is based on K. Hagiwara, N. Okamura, KS PLB.
Solar Neutrinos By Wendi Wampler. What are Neutrinos? Neutrinos are chargeless, nearly massless particles Neutrinos are chargeless, nearly massless particles.
Solar Neutrino Results from SNO
Search for the Diffuse Supernova Neutrino Background in LENA DPG-Tagung in Heidelberg M. Wurm, F. v. Feilitzsch, M. Göger-Neff, T. Marrodán Undagoitia,
Supernova Relic Neutrinos (SRN) are a diffuse neutrino signal from all past supernovae that has never been detected. Motivation SRN measurement enables.
Diffuse SN Neutrino Background (DSNB) in liquid Argon Cecilia Lunardini Arizona State University.
5th June 2003, NuFact03 Kengo Nakamura1 Solar neutrino results, KamLAND & prospects Solar Neutrino History Solar.
Liquid Scintillator Detector Lena Low Energy Neutrino Astronomy L. Oberauer, TUM.
Diffuse supernova neutrinos Cecilia Lunardini Arizona State University And RIKEN BNL Research Center.
IBD Detection Efficiencies and Uncertainties
Jonathan Davis King’s College London
The Diffuse Flux of Supernova Neutrinos
Neutrino astronomy Measuring the Sun’s Core
Solar & Supernova Neutrinos Detection Methods and Prospects
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Davide Franco for the Borexino Collaboration Milano University & INFN
Intae Yu Sungkyunkwan University (SKKU), Korea KNO 2nd KNU, Nov
Overview of the Jiangmen Underground Neutrino Observatory (JUNO)
Low Energy Neutrino Astrophysics
Presentation transcript:

Detection of the Diffuse Supernova Neutrino Background in LENA & Study of Scintillator Properties Michael Wurm DPG Spring Meeting, E15

Neutrinos from Supernovae Detection of the DSNB in LENA Michael Wurm 2/11 SN explosion: 99% of gravitational binding energy are emitted in the form of v‘s galactic rate: ~3 in 100 yrs Diffuse Supernova Neutrinos: all SN throughout the Universe contribute to an isotropic background of vs, the DSNB. all flavours are equally created fluxes are low, v e are the most likely to be detected by inverse  decay v e + p  n + e + SK limit:1.2 cm -2 s -1 for E v > 19.3 MeV S. Ando, K. Sato, astro-ph/

DSNB Predictions Detection of the DSNB in LENA Michael Wurm 3/11 Supernova Model SN 1987A: about 20 v e events detected  spectral shape is strongly model-dependent visible mainly for E v > 10 MeV LL – Lawrence Livermore Group TBP – Thompson, Burrows, Pinto KRJ – Keil, Raffelt, Janka Star Formation Rate redshift-dependent local (z=0): uncertainty compared to used model due to dust extinction high z: even higher uncertainties DSN from z > 1 are dominant for E v < 10 MeV. Detection of the DSNB would provide information both on SN explosion mechanism and on the Star Formation Rate at high redshifts. E v 10 MeV :SN models use …

DSNB Detection in LENA Detection of the DSNB in LENA Michael Wurm 4/11 detection via inverse beta decay v e + p  n + e + (Q = 1.8 MeV) 50x10 6 l of liquid scintillator containing 2.9x10 33 free protons  events in 10 years

Observational Window Detection of the DSNB in LENA Michael Wurm 5/11 In a liquid scintillator: Inverse beta decay: 1.8 MeV reactor v e :~ 10 MeV atmospheric v e :~ 30 MeV  Observation: 10 MeV < E < 30 MeV

Observational Window Detection of the DSNB in LENA Michael Wurm 6/11 In a water Čerenkov detector: Inverse beta decay: 1.8 MeV reactor v e :~ 10 MeV atmospheric v e :~ 30 MeV spallation products:< 19 MeV invisible muons:> 19 MeV  no observational window  no observational window  background substracted statistically

Reactor Background Detection of the DSNB in LENA Michael Wurm 7/11 1. reactor v e spectrum spectral form well known for E < 8 MeV measurements done by Tengblad et al. for E < 12 MeV consideration of high endpoint beta emitters like 94 Br 2. NPP power and position 200 NPP sites considered number of v e per GW of thermal power is ~ 1.3 x include v e  µ oscillations detector sitereactor v e flux 1/cm 2 s Threshold MeV DSNB events in 10 yrs Kamioka2.14 x Frejus1.63 x Pyhäsalmi1.86 x Pylos1.08 x Homestake7.51 x Hawaii1.09 x New Zealand5.38 x

Event Rates in LENA Detection of the DSNB in LENA Michael Wurm 8/11 after 10 years of measurement time in Pyhäsalmi 9.7 MeV < E v < 30 MeV: LL:54 KRJ:45 TBP:29 according to MC simulations, a separation between LL & TBP is possible at 90% C.L. after 10 years DSN spectroscopy in LENA should be possible!

Scintillator Properties Study of Scintillator Properties Michael Wurm 9/11 light yield and transparency of the scintillator are vital for energy resolution & spectroscopy!  laboratory measurements of light yield & attenuation length done in Garching & Heidelberg Scintillator Candidates: PXE (C 16 H 18 ) high light yield, high attenuation length if purified in Al 2 O 3 column, non-hazardous Dodecane (C 12 H 26 ) lowers light yield, very transparent, increases number of free protons up to 25% light yield setup attenuation setup

Photoelectron Yield Study of Scintillator Properties Michael Wurm 10/11 is the number of photons per MeV registered in the PMs. Rough estimation for LENA: Results Results for different mixtures of PXE and Dodecane:  corresponds to an energy resolution of 10 MeV!  corresponds to an energy resolution of 10 MeV! (lower limit)

Conclusions Detection of the DSNB in LENA Michael Wurm 11/11 In a 50 kt liquid scintillator detector like LENA an energy window for DSNB detection from ~10 MeV to 30 MeV can be found. For LENA in Pyhäsalmi, the lower threshold will be about 9.7 MeV, allowing the detection of SN neutrinos emitted at a redshift z>1. 29 to 54 events in 10 years are awaited for LENA within DSNB model predictions. After 10 years, the number of events provided will most likely be sufficient for a spectroscopic discrimination of some of the predicted DSNB models. Technical feasability studies concerning the light yield and attenuation length of the scintillator look very promising. LENA would allow the detection of DNSB for the first time. New observational data both on SN models and on the Star Formation Rate (up to z~2) could be obtained.