The Ohio State University

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
John E. Thomas Students: Joe Kinast, Bason Clancy,
What Do High Tc Superconductors Teach Us About Ultracold Superfluids and Vice Versa? Fermi National Laboratory Jan 2007.
Sound velocity and multibranch Bogoliubov - Anderson modes of a Fermi superfluid along the BEC-BCS crossover Tarun Kanti Ghosh Okayama University, Japan.
Nonequilibrium dynamics of ultracold fermions Theoretical work: Mehrtash Babadi, David Pekker, Rajdeep Sensarma, Ehud Altman, Eugene Demler $$ NSF, MURI,
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA ARO Harvard-MIT David Pekker (Harvard) Mehrtash Babadi (Harvard) Lode Pollet.
Competing instabilities in ultracold Fermi gases $$ NSF, AFOSR MURI, DARPA Motivated by experiments of G.-B. Jo et al., Science (2009) Harvard-MIT David.
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Universality in ultra-cold fermionic atom gases. with S. Diehl, H.Gies, J.Pawlowski S. Diehl, H.Gies, J.Pawlowski.
Pairing and magnetism near Feshbach resonance $$ NSF, AFOSR MURI, DARPA, ARO Harvard-MIT David Pekker (Harvard/Caltech) Mehrtash Babadi (Harvard) Lode.
Ultracold Fermi gases : the BEC-BCS crossover Roland Combescot Laboratoire de Physique Statistique, Ecole Normale Supérieure, Paris, France.
A. Perali, P. Pieri, F. Palestini, and G. C. Strinati Exploring the pseudogap phase of a strongly interacting Fermi gas Dipartimento.
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
What Do Ultracold Fermi Superfluids Teach Us About Quark Gluon and Condensed Matter Wichita, Kansas March 2012.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Theory of interacting Bose and Fermi gases in traps
Ultracold Fermi gases University of Trento BEC Meeting, Trento, 2-3 May 2006 INFM-CNR Sandro Stringari.
Experiments with ultracold atomic gases
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Quantum Gases: Past, Present, and Future Jason Ho The Ohio State University Hong Kong Forum in Condensed Matter Physics: Past, Present, and Future HKU.
Strongly interacting scale-free matter in cold atoms Yusuke Nishida March 12, MIT Faculty Lunch.
Introduction to Ultracold Atomic Gases Qijin Chen.
Many-body quench dynamics in ultracold atoms Surprising applications to recent experiments $$ NSF, AFOSR MURI, DARPA Harvard-MIT Eugene Demler (Harvard)
Quantum Monte Carlo methods applied to ultracold gases Stefano Giorgini Istituto Nazionale per la Fisica della Materia Research and Development Center.
PROBING HOMOGENEOUS QUANTITIES IN A TRAPPED INHOMOGENEOUS FERMI GAS FERMI SURFACE, TAN’S CONTACT AND THE SPECTRAL FUNCTION Yoav Sagi, JILA/CU, Boulder.
E. Kuhnle, P. Dyke, M. Mark, Chris Vale S. Hoinka, Chris Vale, P. Hannaford Swinburne University of Technology, Melbourne, Australia P. Drummond, H. Hu,
1/23 BCS-BEC crossover in relativistic superfluid Yusuke Nishida (University of Tokyo) with Hiroaki Abuki (Yukawa Institute) ECT*19 May, 2005.
Lianyi He and Pengfei Zhuang Physics Department, Tsinghua U.
Physics and Astronomy Dept. Kevin Strecker, Andrew Truscott, Guthrie Partridge, and Randy Hulet Observation of Fermi Pressure in Trapped Atoms: The Atomic.
Strong correlations and quantum vortices for ultracold atoms in rotating lattices Murray Holland JILA (NIST and Dept. of Physics, Univ. of Colorado-Boulder)
Theory of interacting Bose and Fermi gases in traps Sandro Stringari University of Trento Crete, July 2007 Summer School on Bose-Einstein Condensation.
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Superfluidity in atomic Fermi gases Luciano Viverit University of Milan and CRS-BEC INFM Trento CRS-BEC inauguration meeting and Celebration of Lev Pitaevskii’s.
Part A - Comments on the papers of Burovski et al. Part B - On Superfluid Properties of Asymmetric Dilute Fermi Systems Dilute Fermi Systems.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Eiji Nakano, Dept. of Physics, National Taiwan University Outline: 1)Experimental and theoretical background 2)Epsilon expansion method at finite scattering.
Application of the operator product expansion and sum rules to the study of the single-particle spectral density of the unitary Fermi gas Seminar at Yonsei.
Unitarity potentials and neutron matter at unitary limit T.T.S. Kuo (Stony Brook) H. Dong (Stony Brook), R. Machleidt (Idaho) Collaborators:
What have we learned so far about dilute Fermi gases? Aurel Bulgac University of Washington, Seattle These slides will be posted shortly at
Unitary Fermi gas in the  expansion Yusuke Nishida18 January 2007 Contents of this talk 1. Fermi gas at infinite scattering length 2. Formulation of expansions.
The Nature of the Pseudogap in Ultracold Fermi Gases Univ. of Washington May 2011.
Connecting two important issues in cold atoms-- Origin of strong interaction and Existence of itinerant Ferromagnetism 崔晓玲 清华大学高等研究院 兰州 Collaborator:
Ingrid Bausmerth Alessio Recati Sandro Stringari Ingrid Bausmerth Alessio Recati Sandro Stringari Chandrasekhar-Clogston limit in Fermi mixtures with unequal.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Copenhagen, June 15, 2006 Unitary Polarized Fermi Gases Erich J. Mueller Cornell University Sourish Basu Theja DeSilva NSF, Sloan, CCMR Outline: Interesting.
Optical lattice emulator Strongly correlated systems: from electronic materials to ultracold atoms.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
Stationary Josephson effect throughout the BCS-BEC crossover Pierbiagio Pieri (work done with Andrea Spuntarelli and Giancarlo C. Strinati) Dipartimento.
D. Jin JILA, NIST and the University of Colorado $ NIST, NSF Using a Fermi gas to create Bose-Einstein condensates.
An atomic Fermi gas near a p-wave Feshbach resonance
Molecules and Cooper pairs in Ultracold Gases Krynica 2005 Krzysztof Góral Marzena Szymanska Thorsten Köhler Joshua Milstein Keith Burnett.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Superfluid shells for trapped fermions with mass and population imbalance G.-D. Lin, W. Yi*, and L.-M. Duan FOCUS center and MCTP, Department of Physics,
Is a system of fermions in the crossover BCS-BEC regime a new type of superfluid? Finite temperature properties of a Fermi gas in the unitary regime.
Soliton-core filling in superfluid Fermi gases with spin imbalance Collaboration with: G. Lombardi, S.N. Klimin & J. Tempere Wout Van Alphen May 18, 2016.
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
 expansion in cold atoms Yusuke Nishida (INT, U. of Washington  MIT) in collaboration with D. T. Son (INT) 1. Fermi gas at infinite scattering length.
Phase separation and pair condensation in spin-imbalanced 2D Fermi gases Waseem Bakr, Princeton University International Conference on Quantum Physics.
Unitary Fermi gas in the e expansion
Spectroscopy of Superfluid Atomic Fermi Gases
Superfluid LDA (SLDA) Local Density Approximation / Kohn-Sham
One-Dimensional Bose Gases with N-Body Attractive Interactions
Probes of Pairing in Strongly Interacting Fermions
Theory of RF spectroscopy in Strongly Interacting Fermi Gases
Presentation transcript:

The Ohio State University BCS - BEC Crossover: Pseudogap, Vortices & Critical Current Mohit Randeria The Ohio State University Columbus, OH 43210, USA Nordita, June 2006

Outline: review of BCS-BEC crossover theory pseudogap vortex structure fermionic bound states in vortex core critical current  unitary gas is the most robust superfluid

Two routes to Strongly Interacting Fermions in Cold Atom Systems: Feshbach resonance  enhance interactions attraction > Ef 3D BCS-BEC crossover Optical lattice  suppress “kinetic energy” repulsion >> bandwidth 2D Hubbard model high Tc “superconductivity” Feshbach Resonance + Optical lattice goal

6 Fermi Atoms: Li K 40 “up” & “down” species: two different hyperfine states e.g. Li Pairing of “spin up” and “down” fermions interacting via a tunable 2-body interaction: Feshbach Resonance 6 Typical Numbers: Trap freq. ~ 20 - 100 Hz N ~ 10 Ef ~ 100 nK -1 mK T ~ 0.05 - 0.1 Ef 1/kF ~ 0.3 mm TF radius ~ 100 mm Experiments: Jin (JILA) Ketterle (MIT) Grimm (Innsbruck) Hulet (Rice) Thomas (Duke) Salamon (ENS) 6

external B field  tune bound state in closed channel Feshbach Resonance: external B field  tune bound state in closed channel & modify the effective interaction in open channel Closed channel Open channel adapted from Ketterle group (MIT) “Wide” resonance: Linewidth  a single-channel effective model is sufficient

effective interaction: s-wave scattering length Two-body problem: Low-energy effective interaction: s-wave scattering length 2-body bound state in vacuum size as B field increases decreases

Many-body Problem: Dilute gas: range << interparticle distance  Low-energy effective interaction: BCS limit Unitarity BEC limit Dimensionless Coupling constant Strongly Interacting regime

BCS-BEC Crossover BEC BCS tightly bound cooperative molecules Cooper pairing pair size BEC tightly bound molecules pair size  B D. M. Eagles, PR 186, 456 (1969) T=0 variational BCS gap eqn. A.J. Leggett, Karpacz Lectures (1980) plus m renormalization Ph. Nozieres & S. Schmitt-Rink, JLTP 59, 195 (1985) diagrammatic theory of Tc M. Randeria, in “Bose Einstein Condensation” (1995) T*,Tc, T=0; with C. sa deMelo, J. Engelbrecht; and N. Trivedi pseudogap; 2-dimensions

BCS to BEC crossover at T=0 “gap” D chemical potential m momentum distribution n(k) collective modes Crossover: Engelbrecht, MR & Sa de Melo, PRB 55, 15153 (1997)

Functional Integral Approach: Saha ionization T*: Pairing temperature saddle-point Tc: Phase Coherence saddle-point + Gaussian fluctuations BEC BCS Sa de Melo, MR & Engelbrecht, PRL 71, 3202 (1993)

How reliable is “saddle-point + Gaussian fluctuations”? Effect of (static) 4th order terms  Ginzburg criterion Sa de Melo, MR & Engelbrecht, PRL 71, 3202 (1993) PRB 55, 15153 (1997)

Comparison between Theory & Experiment: “Condensate fraction” measured on molecular (BEC) side after rapid sweep from initial state  `Projection’ Experimental data: K: C. A. Regal, M. Greiner, and D. S. Jin, PRL 92, 040403 (2004) Li: M. Zwierlein, et al., PRL 92, 120403 (2004) 40 6 analysis of projection: R. Diener and T. L. Ho, cond-mat/ 0401517 Theoretical Tc: C. Sa deMelo, MR, J. Engelbrecht, PRL 71, 3202 (1993)

Only scales in the problem: Energy & Length “Universality” for Only scales in the problem: Energy & Length Bertsch - Baker (2001); K. O’Hara et al., Science (2002); T. L. Ho, PRL (2004). Mean field theory* + fluctuations At unitarity: Monte Carlo** BEC limit: exact 4-body result! *C. Sa deMelo, MR, J. Engelbrecht, PRL (1993) & PRB (1997) Petrov, Shlyapnikov & Salamon, PRL (2003) ** T= 0 QMC: J. Carlson et al. PRL (2003); G. Astrakharchik et al. PRL(2004) T> 0 QMC: A. Bulgac et al., (2005); E. Burovski et al., (2006); V. Akkineni, D.M. Ceperley & N. Trivedi (2006).

Outline: brief review of BCS-BEC crossover pseudogap vortex structure fermionic bound states in vortex core critical current

Landau’s Fermi-Liquid Theory: Strongly Interacting  Weakly-interacting Normal Fermi systems Quasiparticle gas e.g., He3; electrons in metals; heavy fermions BCS theory: pairing instability in a normal Fermi-liquid Qualitatively new physics in Strongly Interacting Fermions: * Breakdown of Landau’s Fermi-liquid Theory e.g., Normal states of High Tc cuprate superconductors pseudogap in BCS-BEC crossover * Superconductivity/fluidity is not a pairing instability in a normal Fermi liquid.

Breakdown of Fermi-liquid theory: Crossover from to Normal Fermi Gas Normal Bose Gas Pseudogap: Tc < T < T* Pairing Correlations in a degenerate Fermi system M. Randeria et al., PRL (1992) N. Trivedi & MR, PRL (1995) pairing gap in above Tc strong T-dep. suppression of spin susceptibility above Tc no anomalous features in Pseudo -gap

Strongly correlated non-Fermi-liquid superconductors normal states High Tc Cuprates Cold Fermi Gases T* T normal Bose gas Pseudo -gap Fermi Liquid d-wave Tc s-wave Superfluid 0.2 Carrier (hole) concentration BEC BCS low-energy pseudogap high-energy pseudogap strange metal: w/T scaling Spin-Charge separartion? M. Randeria in “Bose Einstein Condensation” (1995) & Varenna Lectures (1997).

Repulsive interactions d-wave pairing near Mott transition High Tc SC in cuprates Highest known Tc (in K) * electrons Repulsive interactions d-wave pairing near Mott transition competing orders: AFM,CDW repulsion U >> bandwidth x ~ 10 A Tc ~ rs << D Mean-field theory fails anomalous normal states - strange metal & pseudogap Breakdown of Fermi-liquid theory Spin-charge separation? BCS-BEC crossover Highest known Tc/Ef ~ 0.2 * cold Fermi atoms Attractive interactions s-wave pairing only pairing instability attraction > Ef x ~ 1/kf Tc ~ rs << D Mean-field theory fails pairing pseudogap

brief review of BCS-BEC crossover pseudogap vortex structure Outline: brief review of BCS-BEC crossover pseudogap vortex structure fermionic bound states in vortex core critical current R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006) See also: N. Nygaard et al., PRL (2003); Bulgac & Y. Yu, PRL(2003). M. Machida & T. Koyama, PRL (2005); K. Levin et al, cond-mat (2005)

Vortices in Rotating Fermi Gases Quantized vortices  unambiguous signature of superfluidity 6 Li Fermi gas through a Feshbach Resonance M.W. Zwierlein et al., Nature, 435, 1047, (2005)

Bogoliubov-DeGennes Theory: mean field theory with a spatially-varying order parameter (can also include external trapping potential; not included here) T=0 Self-consistency: vortex

Order Parameter Profile at T=0: At Unitarity: the two scales merge BCS limit (cf. GL theory) Two length scales! initial rise: (analytical result) approach to on scale:

Density Profiles: BCS limit: Core density ~ n Unitarity: Core density depleted BEC limit: “Empty” core order parameter ~ density

brief review of BCS-BEC crossover pseudogap vortex structure Outline: brief review of BCS-BEC crossover pseudogap vortex structure fermionic bound states in vortex core critical current R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006)

Fermionic Bound States in the Vortex Core: Theoretical prediction (BCS limit): C. Caroli, P. deGennes, J. Matricon, Phys. Lett. 9, 307 (1964) STM Expts. NbSe2: H. Hess et al., PRL (1989). STM: Davis group (Cornell) D0 D(r) “Andreev” bound states in the core: “minigap” & spacing r Very low-energy excitations in vortex core

Spectrum of Fermionic Excitations at unitarity continuum Bound states: Core states “edge” states Minigap follows C-dG-M predictions Through unitarity!

Energy Gap v/s. D in BCS-BEC crossover: Recall: Energy Gap v/s. D in BCS-BEC crossover: Leggett (1980) MR, Duan, Shieh (1990)

Fermionic Excitations in BEC regime Fermion bound state in Vortex core persists into molecular BEC regime! continuum E Bound state! probe bound states via RF spectroscopy

Bound state wavefunctions

brief review of BCS-BEC crossover pseudogap vortex structure Outline: brief review of BCS-BEC crossover pseudogap vortex structure fermionic bound states in vortex core critical current  unitary gas is the most robust superfluid R. Sensarma, MR & T. L. Ho, PRL 96, 090403 (2006) and unpublished

Qs: Is there anything “special” about the unitary superfluid? max but similar for all superfluid density (Gallilean invaraince) for all (analog of ) hard to define – centrifugal effects critical velocity Vc: non-linear response to flow

Current Flow around a vortex: dependence?

Vortex Core Size from Current flow Engelbrecht, MR & Sa de Melo, PRB (1997)  BCS BEC 

Current Flow around a vortex: Critical current:

The unitary gas is the most robust Superfluid max Tc ~ 0.2Ef (but similar for all 1/kfas > 0) max critical velocity: BCS limit: Vc  Pair breaking BEC limit: Vc  Collective modes Landau Criterion:

Conclusions: single-channel model (interaction  as) sufficient for wide resonances in Fermi gases “mean-field theory + fluctuations” is qualitatively correct for BCS-BEC crossover, but no small parameter near unitarity pairing pseudogap: breakdown of Fermi-liquid theory Vortices evolve smoothly through crossover Order Parameter, density & current profiles, Fermion bound states Fermionic bound states exist even on BEC side Critical velocity is nonmonotonic across resonance Unitary gas is the most robust superfluid

The end

Pseudogap in 2D Attractive Hubbard Model Degenerate “normal” Fermi system Tc ~ 0.05t < T < t for |U| = 4t m(T,U) + Un/2 + 4 > T Randeria, Trivedi, Moreo & Scalettar, PRL 69, 2001 (1992) Trivedi & Randeria, PRL 75, 381 (1995)

Pseudogap  Anomalous Spin Corelations dc/dT > 0 1/(T1T) T-dep 1/(T1T) ~ c(T) Randeria, Trivedi, Moreo & Scalettar, PRL 69, 2001 (1992)

c ~ N(0) both strongly T-dep dn/dm very weakly T-dep Pseudoagap: Compressibility looks ordinary Spin susceptibility reflects one-particle Energy gap c ~ N(0) both strongly T-dep dn/dm very weakly T-dep Trivedi & Randeria, PRL 75, 381 (1995)