Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.

Slides:



Advertisements
Similar presentations
Cosmological Aspects of Neutrino Physics (III) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Advertisements

Cosmological Aspects of Neutrino Physics (I) Sergio Pastor (IFIC) 61st SUSSP St Andrews, August 2006 ν.
Weighing Neutrinos including the Largest Photometric Galaxy Survey: MegaZ DR7 Moriond 2010Shaun Thomas: UCL “A combined constraint on the Neutrinos” Arxiv:
Planck 2013 results, implications for cosmology
NEUTRINO PHYSICS FROM PRECISION COSMOLOGY STEEN HANNESTAD 17 AUGUST 2010 – UNIVERSENET, COPENHAGEN e    
G. ManganoThe Path to Neutrino Mass Workshop 1  -decaying nuclei as a tool to measure Relic Neutrinos Gianpiero Mangano INFN, Sezione di Napoli, Italy.
Efectos de las oscilaciones de sabor sobre el desacoplamiento de neutrinos c ó smicos Teguayco Pinto Cejas AHEP - IFIC Teguayco Pinto Cejas
Primordial Neutrinos and Cosmological Perturbation in the Interacting Dark-Energy Model: CMB and LSS Yong-Yeon Keum National Taiwan University SDSS-KSG.
Observational Cosmology - a laboratory for fundamental physics MPI-K, Heidelberg Marek Kowalski.
Suzanne Staggs (Princeton) Rencontres de Blois, 1 June 2011 The Atacama Cosmology Telescope (ACT): Still More Cosmology from the Cosmic Microwave Background.
Upper limits on neutrino masses from cosmology: new results Øystein Elgarøy (Institute of theoretical astrophysics, University of Oslo) Collaborator: Ofer.
Observational Cosmology - a unique laboratory for fundamental physics Marek Kowalski Physikalisches Institut Universität Bonn.
Å rhus, 4 September 2007 Julien Lesgourgues (LAPTH, Annecy, France)
Particle Physics and Cosmology Dark Matter. What is our universe made of ? quintessence ! fire, air, water, soil !
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
NEUTRINOS IN COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS ERICE, 17 SEPTEMBER 2005 e    
Probing dark matter clustering using the Lyman-  forest Pat McDonald (CITA) COSMO06, Sep. 28, 2006.
Physics 133: Extragalactic Astronomy and Cosmology Lecture 11; February
Program 1.The standard cosmological model 2.The observed universe 3.Inflation. Neutrinos in cosmology.
Particle Physics and Cosmology cosmological neutrino abundance.
MATTEO VIEL THE LYMAN-  FOREST: A UNIQUE TOOL FOR COSMOLOGY Bernard’s cosmic stories – Valencia, 26 June 2006 Trieste Dark matter Gas.
RELIC NEUTRINOS: NEUTRINO PROPERTIES FROM COSMOLOGY Sergio Pastor (IFIC) ν.
Neutrinos in Cosmology Alessandro Melchiorri Universita’ di Roma, “La Sapienza” INFN, Roma-1 NOW-2004, 16th September, 2004.
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University BLOIS, 31 MAY 2012 e    
NEUTRINO MASS FROM LARGE SCALE STRUCTURE STEEN HANNESTAD CERN, 8 December 2008 e    
G. Mangano INFN Napoli NOW We know a lot about neutrino properties from lab experiments. We would like to know more exploiting their impact on cosmological.
NEUTRINO PHYSICS FROM COSMOLOGY EVIDENCE FOR NEW PHYSICS? STEEN HANNESTAD, Aarhus University NuHorizons 2011 e    
Inflationary Freedom and Cosmological Neutrino Constraints Roland de Putter JPL/Caltech CosKASI 4/16/2014.
Neutrinos and the large scale structure
NEUTRINO PHYSICS AND COSMOLOGY STEEN HANNESTAD, Aarhus University COSMO, 14 SEPTEMBER 2012 e    
Relic Neutrinos, thermal axions and cosmology in early 2014 Elena Giusarma arXiv: Based on work in collaboration with: E. Di Valentino, M. Lattanzi,
The Cosmic Microwave Background Lecture 2 Elena Pierpaoli.
夏陽 悉尼大学悉尼天文研究所 2015 年 9 月 14 日 中国科学院卡弗里理论物理研究所 宇宙中微子.
Constraints on Dark Energy from CMB Eiichiro Komatsu University of Texas at Austin Dark Energy February 27, 2006.
NEUTRINO COSMOLOGY STEEN HANNESTAD UNIVERSITY OF AARHUS LAUNCH WORKSHOP, 21 MARCH 2007 e    
Neutrinos in Cosmology (I) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
Cosmological Particle Physics Tamara Davis University of Queensland With Signe Riemer-Sørensen, David Parkinson, Chris Blake, and the WiggleZ team.
(some) Future CMB Constraints on fundamental physics Alessandro Melchiorri Universita’ di Roma, “La Sapienza” MIAMI2010, Fort Lauderdale December 15th.
Weighing neutrinos with Cosmology Fogli, Lisi, Marrone, Melchiorri, Palazzo, Serra, Silk hep-ph , PRD 71, , (2005) Paolo Serra Physics Department.
MATTEO VIEL THE LYMAN-  FOREST AS A COSMOLOGICAL PROBE Contents and structures of the Universe – La Thuile (ITALY), 19 March 2006.
Cosmic Microwave Background Carlo Baccigalupi, SISSA CMB lectures at TRR33, see the complete program at darkuniverse.uni-hd.de/view/Main/WinterSchoolLecture5.
NEUTRINO PHYSICS FROM COSMOLOGY e     STEEN HANNESTAD, SDU HEP2003, 18 JULY 2003 e  
BBN: Constraints from CMB experiments Joanna Dunkley University of Oxford IAUS Geneva, Nov
THE LYMAN-  FOREST AS A PROBE OF FUNDAMENTAL PHYSICS MATTEO VIEL Shanghai, 16 March Cosmological significance of the Lyman-  forest 2. LUQAS:
Does WMAP data constrain the lepton asymmetry of the Universe to be zero? M. Lattanzi*, R. Ruffini, G.V. Vereshchagin Dip. di Fisica - Università di Roma.
21 Sept The MSM -- Neutrino Masses and Dark matter -- Takehiko Asaka (Tohoku University) TA, S.Blanchet, M.Shaposhnikov [hep-ph/ ] TA, M.Shaposhnikov.
1 Neutrino properties from cosmological measurements Cosmorenata June’13 Olga Mena IFIC-CSIC/UV.
Cosmological mass bounds on hot-dark matter axions Alessandro MIRIZZI (MPI, Munich) NOW Neutrino Oscillation Workshop Conca Specchiulla, September.
THE CONNECTION OF NEUTRINO PHYSICS WITH COSMOLOGY AND ASTROPHYSICS STEEN HANNESTAD CERN, 1 OCTOBER 2009 e    
Small scale modifications to the power spectrum and 21 cm observations Kathryn Zurek University of Wisconsin, Madison.
The Cosmic Microwave Background
G. Mangano 1 Relic Neutrino Distribution Gianpiero Mangano INFN, Sezione di Napoli Italy.
Massive Neutrinos and Cosmology Ofer Lahav University College London * Brief history of ‘Hot Dark Matter’ * Limits on the total Neutrino mass from redshift.
NEUTRINOS IN THE INTERGALACTIC MEDIUM Matteo Viel, Martin Haehnelt. Volker Springel: arXiv today Rencontres de Moriond – La Thuile 15/03/2010.
Precise calculation of the relic neutrino density Sergio Pastor (IFIC) ν JIGSAW 2007 TIFR Mumbai, February 2007 In collaboration with T. Pinto, G, Mangano,
Neutrinos in Cosmology (II) Sergio Pastor (IFIC Valencia) Universidad de Buenos Aires Febrero 2009 ν.
WG1 NuFact04, Osaka, July Neutrino mass and Cosmology: current bounds and future sensitivities Sergio Pastor (IFIC) ν.
DESY, 30 September 2008 Julien Lesgourgues (CERN & EPFL)
PRECISION COSMOLOGY AND NEW PHYSICS STEEN HANNESTAD, AARHUS UNIVERSITY NExT, SOUTHAMPTON, 27 NOVEMBER 2013.
Cheng Zhao Supervisor: Charling Tao
Neutrino Cosmology and Astrophysics Jenni Adams University of Canterbury, New Zealand TexPoint fonts used in EMF. Read the TexPoint manual before you delete.
Cosmological aspects of neutrinos (II) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν.
NEUTRINOS IN NUCLEOSYNTHESIS AND STRUCTURE FORMATION STEEN HANNESTAD UNIVERSITY OF SOUTHERN DENMARK NOW2004, 17 SEPTEMBER 2004 e    
Cosmological constraints on neutrino mass Francesco De Bernardis University of Rome “Sapienza” Incontro Nazionale Iniziative di Fisica Astroparticellare.
Jan Hamann Rencontres de Moriond (Cosmology) 21st March 2016
Precision cosmology and neutrinos
GGI, Florence, 14 September 2006 Julien Lesgourgues (LAPTH, Annecy)
The impact of non-linear evolution of the cosmological matter power spectrum on the measurement of neutrino masses ROE-JSPS workshop Edinburgh.
ν Are we close to measuring the neutrino hierarchy? Filipe B. Abdalla
Presentation transcript:

Cosmological aspects of neutrinos (III) Sergio Pastor (IFIC Valencia) JIGSAW 2007 TIFR Mumbai, February 2007 ν

Cosmological aspects of neutrinos 3rd lecture Bounds on m ν from CMB, LSS and other data Bounds on the radiation content (N eff ) Future sensitivities on m ν from cosmology keV sterile neutrinos as Dark Matter

Neutrino oscillations in the Early Universe Neutrino oscillations are effective when medium effects get small enough Compare oscillation term with effective potentials Strumia & Vissani, hep-ph/ Oscillation term prop. to Δm 2 /2E First order matter effects prop. to G F [n(e - )-n(e + )] Second order matter effects prop. to G F (E/M Z 2 )[ρ(e - )+ ρ (e + )] Coupled neutrinos

keV sterile neutrinos mixed with active species Consider 2 ν active-sterile mixing with  m 2 of order keV 2 and very small mixing angle Probability of conversion in the primordial plasma (active neutrinos still interacting) λ osc =oscillation length λ s =scattering length Mixing angle suppressed by medium effects until T falls below T≈130 MeV(  m 2 /keV 2 ) 1/6

The heavy state decays radiatively (with lifetime larger than the age of the Universe): search for X-ray photon line Abazajian et al 2001, Dolgov & Hansen 2002 Kusenko, Neutrino 2006 keV states created in partial equilibrium with the right DM density Would behave as Warm Dark Matter: lower limits from Structure Formation See e.g. Viel et al 2006 Dodelson & Widrow 1994 Shi & Fuller 1999 Abazajian et al 2001 Dolgov & Hansen 2002

Bounds on mν from CMB, LSS and other data

Effect of massive neutrinos on the CMB and Matter Power Spectra Max Tegmark

Neutrinos as Hot Dark Matter Massive Neutrinos can still be subdominant DM: limits on m ν from Structure Formation (combined with other cosmological data)

How to get a bound (measurement) of neutrino masses from Cosmology DATA Fiducial cosmological model: (Ω b h 2, Ω m h 2, h, n s, τ, Σm ν ) PARAMETER ESTIMATES

Cosmological Data CMB Temperature: WMAP plus data from other experiments at large multipoles (CBI, ACBAR, VSA…) CMB Polarization: WMAP,… Large Scale Structure: * Galaxy Clustering (2dF,SDSS) * Bias (Galaxy, …): Amplitude of the Matter P(k) (SDSS,σ 8 ) * Lyman-α forest: independent measurement of power on small scales * Baryon acoustic oscillations (SDSS) Bounds on parameters from other data: SNIa (Ω m ), HST (h), …

Cosmological Parameters: example SDSS Coll, PRD 69 (2004)

Cosmological bounds on neutrino mass(es) A unique cosmological bound on m ν DOES NOT exist ! ν

Cosmological bounds on neutrino mass(es) A unique cosmological bound on m ν DOES NOT exist ! Different analyses have found upper bounds on neutrino masses, since they depend on The combination of cosmological data used The assumed cosmological model: number of parameters (problem of parameter degeneracies) The properties of relic neutrinos

Cosmological bounds on neutrino masses using WMAP3 Fogli et al., hep-ph/ Dependence on the data set used. An example:

Neutrino masses in 3-neutrino schemes CMB + galaxy clustering + HST, SNI-a…+ BAO and/or bias + including Ly- α Lesgourgues & SP, Phys. Rep. 429 (2006) 307

Tritium  decay, 0 2  and Cosmology Fogli et al., hep-ph/

0 2  and Cosmology Fogli et al., hep-ph/

At T<m e, the radiation content of the Universe is Effective number of relativistic neutrino species Traditional parametrization of the energy density stored in relativistic particles Relativistic particles in the Universe

Extra radiation can be: scalars, pseudoscalars, sterile neutrinos (totally or partially thermalized, bulk), neutrinos in very low-energy reheating scenarios, relativistic decay products of heavy particles… Particular case: relic neutrino asymmetries Constraints on N eff from BBN and from CMB+LSS Extra relativistic particles

Effect of N eff at later epochs N eff modifies the radiation content: Changes the epoch of matter-radiation equivalence

CMB+LSS: allowed ranges for N eff Set of parameters: ( Ω b h 2, Ω cdm h 2, h, n s, A, b, N eff ) DATA: WMAP + other CMB + LSS + HST (+ SN-Ia) Flat Models Non-flat Models Recent result Pierpaoli, MNRAS 342 (2003) 95% CL Crotty, Lesgourgues & SP, PRD 67 (2003) 95% CL Hannestad, JCAP 0305 (2003) Hannestad & Raffelt, astro-ph/ % CL

Allowed ranges for N eff Mangano et al, astro-ph/ Using cosmological data (95% CL)

Future bounds on N eff Next CMB data from WMAP and PLANCK (other CMB experiments on large l’s) temperature and polarization spectra Forecast analysis in Ω Λ =0 models Lopez et al, PRL 82 (1999) 3952 WMAP PLANCK

Future bounds on N eff Updated analysis: Larger errors Bowen et al 2002 ΔN eff ~ 3 (WMAP) ΔN eff ~ 0.2 (Planck) Bashinsky & Seljak 2003

The bound on Σm ν depends on the number of neutrinos Example: in the 3+1 scenario, there are 4 neutrinos (including thermalized sterile) Calculate the bounds with N ν > 3 Abazajian 2002, di Bari 2002 Hannestad JCAP 0305 (2003) 004 (also Elgarøy & Lahav, JCAP 0304 (2003) 004) 3 ν 4 ν 5 ν Hannestad 95% CL WMAP + Other CMB + 2dF + HST + SN-Ia

Σm ν and N eff degeneracy (0 eV,3) (0 eV,7) (2.25 eV,7) (0 eV,3) (0 eV,7) (2.25 eV,7)

Analysis with Σm ν and N eff free Hannestad & Raffelt, JCAP 0404 (2004) 008 Crotty, Lesgourgues & SP, PRD 69 (2004) σ upper bound on Σm ν ( eV) WMAP + ACBAR + SDSS + 2dF Previous + priors (HST + SN-Ia) BBN allowed region

Analysis with Σm ν and N eff free Crotty, Lesgourgues & SP, PRD 69 (2004) WMAP + ACBAR + SDSS + 2dF Hannestad & Raffelt, JCAP 0611 (2006) 016 BBN allowed region

Parameter degeneracy: Neutrino mass and w In cosmological models with more parameters the neutrino mass bounds can be relaxed. Ex: quintessence-like dark energy with ρ DE =w p DE WMAP Coll, astro-ph/ Λ

Non-standard relic neutrinos The cosmological bounds on neutrino masses are modified if relic neutrinos have non-standard properties (or for non-standard models) Two examples where the cosmological bounds do not apply Massive neutrinos strongly coupled to a light scalar field: they could annihilate when becoming NR Neutrinos coupled to the dark energy: the DE density is a function of the neutrino mass (mass-varying neutrinos)

Non-thermal relic neutrinos The spectrum could be distorted after neutrino decoupling Example: decay of a light scalar after BBN Cuoco, Lesgourgues, Mangano & SP, PRD 71 (2005) Thermal FD spectrum Distortion from Φ decay * CMB + LSS data still compatible with large deviations from a thermal neutrino spectrum (degeneracy NT distortion – N eff ) * Better expectations for future CMB + LSS data, but model degeneracy NT- N eff remains

Future sensitivities to Σm ν CMB (Temperature & Polarization anis.) Galaxy redshift surveys Galaxy cluster surveys Weak lensing surveys CMB lensing Future cosmological data will be available from WMAP, SPT, ACT, BICEP, QUaD, BRAIN, ClOVER, PLANCK, SAMPAN, Inflation Probe, SDSS, SDSS-II, ALHAMBRA, KAOS, DES, CFHTLS, SNAP, LSST, Pan-STARRS, DUO…

PLANCK+SDSS Lesgourgues, SP & Perotto, PRD 70 (2004) Σm detectable at 2σ if larger than 0.21 eV (PLANCK+SDSS) 0.13 eV (CMBpol+SDSS) Fiducial cosmological model: (Ω b h 2, Ω m h 2, h, n s, τ, Σm ν ) = (0.0245, 0.148, 0.70, 0.98, 0.12, Σm ν ) Fisher matrix analysis: expected sensitivities assuming a fiducial cosmological model, for future experiments with known specifications

Future sensitivities to Σm ν : new ideas weak gravitational and CMB lensing lensing No bias uncertainty Small scales much closer to linear regime Tomography: 3D reconstruction Makes CMB sensitive to smaller neutrino masses

Future sensitivities to Σm ν : new ideas sensitivity of future weak lensing survey (4000º) 2 to m ν σ(m ν ) ~ 0.1 eV Abazajian & Dodelson PRL 91 (2003) sensitivity of CMB (primary + lensing) to m ν σ(m ν ) = 0.15 eV (Planck) σ(m ν ) = eV (CMBpol) Kaplinghat, Knox & Song PRL 91 (2003) weak gravitational and CMB lensing lensing

CMB lensing: recent analysis σ(M ν ) in eV for future CMB experiments alone : Lesgourgues et al, PRD 73 (2006)

Summary of future sensitivities Lesgourgues & SP, Phys. Rep. 429 (2006) 307 Future cosmic shear surveys

End of 3rd lecture