Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the.

Slides:



Advertisements
Similar presentations
Temporal and Frequency Variations of Flares observed by LYRA onboard of PROBA2 B. Foing (1), D. Vagg(2), M. Dominique(3),
Advertisements

Page 1 Cristina Chifor (a) Ken Phillips (b), Brian Dennis (c) a) DAMTP, University of Cambridge, UK b) Mullard Space Science Lab, UK c) NASA/GSFC, Maryland,
Algorithm Working Group Space Weather Team Activities and Plans S. Hill, H. Singer, T. Onsager, R. Viereck, D. Biesecker, C. Balch – NOAA/NWS/NCEP/SEC.
Solar flare studies with the LYRA - instrument onboard PROBA2 Marie Dominique, ROB Supervisor: G. Lapenta Local supervisor: A. Zhukov.
LYRA on-board PROBA2: instrument performances and latest results M. Dominique (1), I. Dammasch (1), M. Kretzschmar (1,2) (1) Royal Observatory of Belgium.
Impact of the Particle Environment on LYRA Data M. Dominique, A. BenMoussa, M.Kruglanski, L. Dolla, I. Dammasch, M. Kretzschmar PROBA2 workshop, May 04.
LYRA status update M. Dominique and I. Dammasch ESWW9, Brussels 2012.
Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO.
X-Ray Observation and Analysis of a M1.7 Class Flare Courtney Peck Advisors: Jiong Qiu and Wenjuan Liu.
RHESSI/GOES Observations of the Non-flaring Sun from 2002 to J. McTiernan SSL/UCB.
1 G. Cessateur, T. Dudok de Wit, M. Kretzschmar, L. Vieira LPC2E, University of Orléans, France J. Lilensten LPG, University of Grenoble, France New Models.
ASIC3 WorkshopLandsdowne, VA May 16-18, 2006 J. Harder Page 1 Calibration Status of the Solar Irradiance Monitor (SIM) : The Present and the Future Jerald.
Ingolf E. Dammasch ROB/SIDC Brussels, Belgium Solar UV Spectroscopy with SUMER on SOHO (extended version for 11 Oct 2007)
Institutes Royal Observatory of Belgium (Brussels, BE) Principal Investigator, overall design, onboard software specification, science operations PMOD/WRC.
SDO/AIA science plan: prioritization and implementation: Five Objectives in 10 steps [session no.] HMI/AIA science teams meeting; Monterey; Feb
PROBA2 a Space Weather Monitor Matthew J West ESWW10 - Nov 2013.
Thermal evolution of flares observed by PROBA2/LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC) COSPAR 39 th.
Solar Irradiance Observations with LYRA on PROBA2 I. E. Dammasch, M. Dominique, J.-F. Hochedez & the LYRA Team X th Hvar Astrophysical Colloquium Hvar,
LYRA on-board PROBA2 EUV irradiance inter-calibration workshop M. Dominique + LYRA team October 2011, LASP.
Detecting EUV waves Detecting Dimmings www. SolarDemon.oma.be near real-time, Flare, Dimming, and EUV wave Monitoring E. Kraaikamp 1, C. Verbeeck 1, and.
First Results on Solar Irradiance Variability from PROBA2/LYRA/SWAP R. Kariyappa (guest investigator), S. T. Kumar, M. Dominique, D. Berghmans, L. Dame,
Variation of EUV solar irradiances along the cycle Vincenzo Andretta 1, Giulio Del Zanna 2, Seth Wieman 3 1 INAF – Osservatorio Astronomico di Capodimonte,
Multi-satellite Solar Spectral Irradiance Composite (MUSSIC) M. Snow, J. Machol, & E. Richard University of Colorado LASP & CIRES
LYRA Status PROBA2 workshop February 2011 M. Dominique + LYRA team.
Five years of EUV solar irradiance evolution, from short to long timescales as observed by PROBA2/LYRA I.E. Dammasch, M. Dominique, L. Wauters, A. Katsiyannis,
 ESA’s “PRoject for On-Board Autonomy”  Belgian microsatellite in Sun-synchronous orbit  725 km altitude  Launched 02 Nov 2009  Nominal operations.
Werner Schmutz, PMOD/WRC Status of the space weather experiments LYRA/PROBA2 and PREMOS/PICARD PMOD/WRC COST 724 project: Short-term variability.
LYRA occultations Meeting 2011/05/05. LYRA: Occultations Lyman α Herzberg Aluminum Zirconium EUVUV Vis (IR ?) Lyman α: very sensitive to Visible and InfraRed.
Energetic particle environment as seen by SphinX P. Podgorski 1, O. V. Dudnik 2, S. Gburek 1, M. Kowalinski 1, J. Sylwester 1, M. Siarkowski 1, S. Plocieniak.
LYRA Calibration using TIMED and SORCE I. E. Dammasch, ROB/SIDC Solar EUV Irradiance Working Group Inter-Calibration and Degradation of EUV Instruments.
Degradation of LYRA on PROBA2 after two years in orbit I. E. Dammasch STCE Workshop Brussels, 03 May 2012 LYRA the Large-Yield Radiometer onboard PROBA2.
- “Level” refers to the long-term irradiance, measured as the significant daily minimum, i.e. without flares or instrumental artefacts. - “Variance” refers.
First Results from the LYRA Solar UV Radiometer J.-F. Hochedez, I. E. Dammasch, M. Dominique & the LYRA Team COSPAR 38 th Scientific Assembly Bremen
ESWW4, Brussels, Novembre 2006 Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes: A review of theories, models.
Retrieving the EUV solar spectrum from a selected set of lines for space weather purposes Jean Lilensten (LPG, Grenoble) Thierry Dudok de Wit (LPCE, Orléans)
LYRA Calibration DRB Meeting ESTEC 15 June 2007 LYRA the Lyman-alpha Radiometer onboard PROBA-2.
Solar Irradiance (Swiss contributions to ILWS) 4th ILWS general meeting, Beijing, June 22-23, 2006 Werner Schmutz, PMOD/WRC, Switzerland (representing.
Correlation between sunspot numbers and EUV irradiance as observed by LYRA on PROBA2 Ingolf. E. Dammasch & Laure Lefevre, ROB SIDC Seminar, Brussels, 10.
COS PIPELINE CDR Jim Rose July 23, 2001OPUS Science Data Processing Space Telescope Science Institute 1 of 12 Science Data Processing
LYRA Science Data Products Forthcoming Abstract The satellite PROBA2, built in Belgium and to be launched this summer, is an ESA micro-mission for the.
Prediction of solar flares on the basis of correlation with long-term irradiance and sunspot levels Ingolf E. Dammasch, Marie Dominique (ROB) SIDC Seminar,
LYRA Calibration, Data Products, Plans I. E. Dammasch, ROB/SIDC PROBA2 Science Meeting Sun 360, Kiel, Jul 2011 LYRA the Large-Yield Radiometer onboard.
Status of SORCE and LASP EUV Missions M. Snow T. Woods, J. Harder University of Colorado/LASP
Components of soft X-ray and extreme ultraviolet in flares observed by LYRA on PROBA2 I. E. Dammasch¹, M. Dominique¹, M. Kretzschmar¹, P. C. Chamberlin².
LYRA Instrumental Effects T. Katsiyannis & M. Dominique on behalf of the LYRA team.
Flare Irradiance Studies with the EUV Variability Experiment on SDO R. A. Hock, F. G. Eparvier, T. N. Woods, A. R. Jones, University of Colorado at Boulder.
SWAP and LYRA onboard PROBA2 RWC Belgium’s space segment.
Components of soft X-ray and extreme ultraviolet in flares observed by LYRA I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), P. C. Chamberlin (NASA/GSFC)
Status of PREMOS data SOLID Workshop 14th October 2013 G. Cessateur for the PREMOS team PMOD/WRC, Switzerland.
Two years of solar observation with PROBA2/LYRA: An overview I. E. Dammasch, M. Dominique, M. Kretzschmar (ROB/SIDC), XII th Hvar Astrophysical Colloquium.
LYRA calibration considering the evolution of dark currents I. E. Dammasch, ROB/SIDC Solar EUV Irradiance Working Group Inter-Calibration and Degradation.
LYRA Calibration Status I. E. Dammasch, ROB/SIDC PROBA2 Science Working Team Meeting ROB, Brussels, Belgium, 24 Jun 2013 LYRA the Large-Yield Radiometer.
1 Welcome / Introduction STCE workshop – BIRA-IASB/STCE, March 10-12, 2015, Brussels, Belgium STCE - Workshop Six years of SOLAR/SOLSPEC mission on ISS.
Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the.
AMS Meeting, January 2008J1.3. Eparvier - 1 EXIS: The Next Generation of Solar EUV and X-Ray Sensors for GOES-R + F.G. Eparvier, T.N. Woods, W. McClintock,
LYRA Tests and Selections SCSL Meeting Bern 29 Nov - 01 Dec 2006 LYRA the Lyman-alpha Radiometer onboard PROBA-2.
Science and Space Weather Opportunities for PROBA2 M. Dominique STCE meeting, May
Mid-term Periodicities of the LYRA data spectrum
SCSL SWAP/LYRA workshop
M. Dominique, I.E. Dammasch, L. Wauters, T. Kastiyannis
LYRA Tests and Calibration
in-orbit operations and achievements
LYRA on PROBA2 and other PMOD/WRC irradiance experiments
Combining SWAP and LYRA observations
the Lyman-alpha Radiometer onboard PROBA-2
Synergies between solar UV radiometry and imaging
Configuration and Tests
The GOES EUVS Model: New Operational Spectral Irradiances from GOES-R
Solar EUV Irradiance Monitoring beyond SDO-EVE: GOES EXIS Preliminary Measurements and Validation F.G. Eparvier, A.R. Jones, T.N. Woods, M. Snow, E.M.B.
Presentation transcript:

Solar Irradiance Observations with LYRA on PROBA2 (An Introduction) I. E. Dammasch, M. Dominique & the LYRA Team Royal Observatory of Belgium LYRA the Large-Yield Radiometer onboard PROBA2

LYRA: the Large-Yield RAdiometer 3 instrument units (redundancy) 4 spectral channels per head 3 types of detectors, Silicon + 2 types of diamond detectors (MSM, PIN): - radiation resistant - insensitive to visible light compared to Si detectors High cadence up to 100 Hz

Royal Observatory of Belgium (Brussels, B) Principal Investigator, overall design, onboard software specification, science operations PMOD/WRC (Davos, CH) Lead Co-Investigator, overall design and manufacturing Centre Spatial de Liège (B) Lead institute, project management, filters IMOMEC (Hasselt, B) Diamond detectors Max-Planck-Institut für Sonnensystemforschung (Lindau, D) calibration science Co-Is: BISA (Brussels, B), LPC2E (Orléans, F)… LYRA highlights

 4 spectral channels covering a wide emission temperature range  Redundancy (3 units) gathering three types of detectors  Rad-hard, solar-blind diamond UV sensors (PIN and MSM)  AXUV Si photodiodes  2 calibration LEDs per detector (λ = 465 nm and 390 nm)  High cadence (up to 100Hz)  Quasi-continuous acquisition during mission lifetime LyHzAlZr Unit1MSMPINMSMSi Unit2MSMPINMSM Unit3SiPINSi

SWAP and LYRA spectral intervals for solar flares, space weather, and aeronomy LYRA channel 1: the H I nm Lyman-alpha line ( nm) LYRA channel 2: the nm Herzberg continuum range (now nm) LYRA channel 3: the nm Aluminium filter range incl the He II 30.4 nm line (+ <5nm X-ray) LYRA channel 4: the 6-20 nm Zirconium filter range with highest solar variablility (+ <2nm X-ray) SWAP: the range around 17.4 nm including coronal lines like Fe IX and Fe X

LYRA pre-flight spectral responsivity (filter + detector, twelve combinations)

LYRA data products and manuals… …available at the PROBA2 Science Center:

Summary: FITS File Structure lyra_ _000000_lev1_***.fits where: *** = met, std, cal, rej, (bst, bca, bre) generally: header + binary extension table(s) extension = header + data (variable length) Lev1 met = HK, STATUS, VFC Lev1 std = uncalibr. irradiance (counts/ms) Lev2 std = calibr. irradiance (W/m²) Lev3 std = calibr. aver. irradiance (W/m²) per line: time, ch1, ch2, ch3, ch4, qual.

Product Definition (“Level 0”, telemetry from PROBA2, internal) Level 1 = full raw data (LY-EDG output) Level 2 = calibrated physical data (LY-BSDG output) Caution: preliminary status. Require versioning. Level 3 = processed products (e.g. averages) Level 4 = plots of products Level 5 = event lists (optionally with plots)

Further Data Products… …“Level 4”, “Level 5” (from preliminary to current status):

before

now

before

now

before

now

monthly overview

interval around a flare (-1h,+2h)

LY-TMR: State of the data processing pipeline LY-EDG LY-BSDG Telemetry packets “Lev0”: Raw data (in counts) Lev1: Engineering data (in counts/ms) fits Lev2,Lev3: Calibrated data (in W/m²) Other tools Higher level data products Current stateIn the future Not distributed After each contact After each contact After each contact After each contact Plots regular, Flare list irregular systematic

First results (even before opening covers)

Aurora Oval  Perturbations appearing around 75° latitude  2-3 days after a CME, flare...  Associated to geomagnetic perturbations Spacecraft maneuvers SAA

First Light acquisition (06 Jan 2010)

Aeronomy  Occultations: Study atmospheric absorption; high temporal resolution needed  Input for atmospheric models: NRT and calibrated data needed

Flares LYRA observes flares down to B1.0 LYRA flare list agrees with GOES14&15 Flares are visible in the two short-wavelength channels Exceptionally strong and impulsive flares are also visible in the Lyman- alpha channel (precursor) Example: C4.0 flare, 06 Feb 2010, 07:04 UTC

M2.0 flare, 08 Feb 2010, 13:47 UTC

Comparison with GOES flare Example: M1.8 flare, 20 Jan 2010, 10:59 UTC

Comparison with GOES flare Example: C5.4 flare, 15 Aug 2010, 18:30 UTC

LYRA flare size LYRA background-subtracted flux in Zr (channel 2-4) LYRA observes all GOES flares in both Al and Zr channels Initially also Lyman-alpha contribution for strong impulsive flares Similar onset, different peak times in different pass bands Good correlation to GOES, better temporal resolution

GOES vs. LYRA proxies (new website under construction)

Example: M1.1 flare, 28 Feb 2011 start to rise at same time parallel in impulsive phase GOES peaks earlier LYRA decreases slower linear factor in pure flare irradiance

Flare components ch2-3 = SXR+EUV “SXR”: emission with log(T)>7 “EUV residual”: emission with 6<log(T)<7 “little bump”: emission with log(T)<6 Compare with SDO/EVE:

Thermal evolution plot based on: solar spectra observed by SDO/EVE contribution functions from the CHIANTI atomic database

Sun-Moon eclipse …demonstrating the inhomogeneous distribution of EUV radiation across the solar surface

Eclipses as seen with SWAP swap_eclipse_15Jan2010.mp4 swap_eclipse_11Jul2010.mp4

And we have a fifth channel at 17.4nm called SWAP (using “SWAVINT”)

Jan - Sep 2010 SWAVINT and LYRA look quite similar LYRA shows flares in addition to EUV

SWAP and LYRA observing together _proba2_movie.mp4

July 2010: LYRA vs. ESP (SDO/EVE)

July 2010: LYRA vs. GOES

Next steps Cross-calibration (internal/external) Produce calibrated data automatically (OK, but regular updates necessary) Publish first results (in process) Advertise data products Get another extension from ESA (2012: OK)

How to be involved? Scientists are welcome to use PROBA2 data propose special observation campaigns Guest Investigator Program welcomes proposals for dedicated (joint) observations in the frame of a science project: Funds available for a stay at PROBA2 Science Center Scientist can take part in the commanding of the instruments Will gain expertise in the instrumental effects Next announcement (for ): May 2011 Proposal deadline and selection: June 2011 First visits: September 2011 onwards

Calibration 2010 according to TIMED/SEE

Calibration – Problem: 2010 according to LYRA

Solution – Start with “First Light”

… fit the degradation …

… and add it Plausibility: Artifacts in channels 1 and 2 Non-degenerated SXR in channels 3 and 4

To be continued