The zCOSMOS 3D density field Katarina Kovač 1, Simon Lilly 1, C. Porciani 1, O. Cucciati 2, A. Iovino 2, C. Knobel 1, C.M. Carollo 1, P. Oesch 1, A. Finoguenov.

Slides:



Advertisements
Similar presentations
Evolution of clustering in COSMOS: a progress report Luigi Guzzo (INAF, Milano) N. Scoville, O. Le Fevre, A. Pollo, B. Meneux, & COSMOS Team.
Advertisements

Low-frequency radio maps for the REXCESS cluster sample S.R. Heidenreich, University of Southampton In collaboration with J.H. Croston, University of Southampton;
Angela Bongiorno Max Planck Institut fuer Extraterrestrische Physik (MPE) Collaborators: Marco Mignoli (INAF-Osservatorio Astronomico di Bologna) Gianni.
Motivation 40 orbits of UDF observations with the ACS grism Spectra for every source in the field. Good S/N continuum detections to I(AB) ~ 27; about 30%
HI Stacking: Past, Present and Future HI Pathfinder Workshop Perth, February 2-4, 2011 Philip Lah.
Clusters, Galaxies and the COSMOS J Berian James (IfA Edinburgh), John Peacock, Alexis Finoguenov, Henry Joy McCracken & Gigi Guzzo for the COSMOS collaboration.
zCOSMOS VIMOS spectroscopic survey on the VLT
COSMOS Kyoto meeting May 2005 Obscured AGN in the COSMOS field Andrea Comastri (INAF – Bologna) on behalf of the XMM-COSMOS team.
Extragalatic Surveys, Cambridge MA, Nov 6-8, 2006 Vincenzo Mainieri G. Hasinger, N. Cappelluti, M. Brusa, F. Civano, A. Comastri, M. Elvis, A. Finoguenov,
Weak lensing mass-selected cluster catalogues Richard Massey (CalTech) with Jason Rhodes (JPL), Alexie Leauthaud (Marseille), Justin Albert (CalTech),
Clustering in the Cosmic Evolution Survey (COSMOS) Luigi Guzzo (INAF, Milano) N. Scoville, A. El Zant, O. Le Fevre, B. Meneux, A. Pollo & COSMOS Team (Fundamental.
Evolution of Luminous Galaxy Pairs out to z=1.2 in the HST/ACS COSMOS Field Jeyhan Kartaltepe, IfA, Hawaii Dave Sanders, IfA, Hawaii Nick Scoville, Caltech.
Weak-Lensing selected, X-ray confirmed Clusters and the AGN closest to them Dara Norman NOAO/CTIO 2006 November 6-8 Boston Collaborators: Deep Lens Survey.
HI in Galaxies at Redshifts 0.1 to 1.0: Current and Future Observations Using Optical Redshifts for HI Coadding Deep Surveys of the Radio Universe with.
AGN and Quasar Clustering at z= : Results from the DEEP2 + AEGIS Surveys Alison Coil Hubble Fellow University of Arizona Chandra Science Workshop.
Exploring the Stellar Populations of Early-Type Galaxies in the 6dF Galaxy Survey Philip Lah Honours Student h Supervisors: Matthew Colless Heath Jones.
Redshift Evolution Of The Morphology Density Relation
The spatial clustering of X-ray selected AGN R. Gilli Istituto Nazionale di Astrofisica (INAF) Osservatorio Astronomico di Bologna On behalf of the CDFS.
High Redshift Massive Galaxies (BzKs & EIS-Deep3a and COSMOS Xu KONG collaborators :
Measuring the clustering of galaxies in COSMOS Measuring the clustering of galaxies in COSMOS Olivier Le Fèvre, LAM Why ? Why ? How ? correlation function.
Nikos Nikoloudakis and T.Shanks, R.Sharples 9 th Hellenic Astronomical Conference Athens, Greece September 20-24, 2009.
Relating Mass and Light in the COSMOS Field J.E. Taylor, R.J. Massey ( California Institute of Technology), J. Rhodes ( Jet Propulsion Laboratory) & the.
High Redshift Galaxies (Ever Increasing Numbers).
Angular clustering and halo occupation properties of COSMOS galaxies Cristiano Porciani.
Evolution of Luminous Galaxy Pairs out to z=1.2 in the HST/ACS COSMOS Field Jeyhan Kartaltepe, IfA, Hawaii Dave Sanders, IfA, Hawaii Nick Scoville, Caltech.
14 December 2006 Dark Matter Haloes in the Cosmic Web Cristiano Porciani (ETH Zurich) with OLIVER HAHN, Marcella Carollo, Avishai Dekel.
G. Zamorani On behalf of the VVDS-SWIRE collaboration PI : Carole Lonsdale PI O. Le Fèvre Co-PI G. Vettolani Evolutionary properties of galaxies and mass.
UCL, Sept 16th 2008 Photometric redshifts in the SWIRE Survey - the need for infrared bands Michael Rowan-Robinson Imperial College London.
Photometric Catalog I-band selected photometric catalog containing ~800,000 galaxies (I (AB) < 26 mag) in 8 bands (UBVgRizK) Star-Galaxy separation using.
The Clustering of AGN Using Photometric Redshifts Elias Koulouridis Antonis Georgakakis National Observatory of Athens.
Evolution of Galaxy groups Michael Balogh Department of Physics University of Waterloo.
Masami Ouchi (Space Telescope Science Institute) for the SXDS Collaboration Cosmic Web Made of 515 Galaxies at z=5.7 Kona 2005 Ouchi et al ApJ, 620,
Simon Lilly (ETH Zurich), Angela Iovino, Valentina Presotto (INAF Brera) + zCOSMOS Team COSMOS Meeting, Honolulu Christian Knobel (ETH Zurich)
Environmental Properties of a Sample of Starburst Galaxies Selected from the 2dFGRS Matt Owers (UNSW) Warrick Couch (UNSW) Chris Blake (UBC) Michael Pracy.
● DES Galaxy Cluster Mock Catalogs – Local cluster luminosity function (LF), luminosity-mass, and number-mass relations (within R 200 virial region) from.
SNLS: Overview and High-z Spectroscopy D. Andrew Howell (Toronto) for the SNLS Collaboration (see: for full list)
Obscured AGN in the (z)COSMOS survey AGN9, Ferrara, May Angela Bongiorno Max-Planck-Institut für extraterrestrische Physik, Garching, GERMANY AND.
Peter Capak Associate Research Scientist IPAC/Caltech.
XMM-Newton surveys of X-ray galaxy groups Alexis Finoguenov MPE/UMBC+ S.Giodini, V.Allevato, M. Tanaka, A. Leauthaud, O. Ilbert, N.Cappelluti, J.Silverman,
The clustering of galaxies detected by neutral hydrogen emission Sean Passmoor Prof. Catherine Cress Image courtesy of NRAO/AUI and Fabian Walter, Max.
1 VVDS: Towards a complete census of star formation at 1.4
Graziano Coppa M.Mignoli, G.Zamorani, M.Bolzonella, D.Vergani S.Bardelli, E.Zucca & the zCosmos collaboration Università di Bologna - Dipartimento di Astronomia.
Properties of the point-like sources in the XMM-LSS field Olga Melnyk and XMM-LSS collaboration N. Clerc, L. Chiappetti, A. Elyiv, P.Gandhi, E.Gosset,
June 7, 2010COSMOS Team Meeting, IfA, Hawaii 1 The COSMOS Archive: Eight Years of Data Patrick L. Shopbell (Caltech), Nick Scoville (Caltech), The COSMOS.
Galaxies in the UKIDSS Large Area Survey Jon Loveday Anthony Smith Celine Eminian University of Sussex.
1 Deep spectroscopic redshift surveys are a central tool to modern Astrophysics Deep redshift surveys (z>0.3) have shaped our current understanding: 
Keck spectroscopy and dynamical masses for a large sample of 1 < z < 1.6 passive red galaxies Sirio Belli with Andrew B. Newman and Richard S. Ellis ApJ,
MNRAS, submitted. Galaxy evolution Evolution in global properties reasonably well established What drives this evolution? How does it depend on environment?
Katarina Kovač (ETH Zürich) Environmental quenching disentangled: centrals, satellites, and galactic conformity Katarina Kovač, ETH Zürich Collaborators:
USING LOW POWER RADIO GALAXIES AS BEACONS FOR CLUSTERS AT 1
Emission Line Galaxy Targeting for BigBOSS Nick Mostek Lawrence Berkeley National Lab BigBOSS Science Meeting Novemenber 19, 2009.
Vince Oliver PhD student of ELTE University Budapest  Assignments within MAGPOP project.
Photometric Redshifts: Some Considerations for the CTIO Dark Energy Camera Survey Huan Lin Experimental Astrophysics Group Fermilab.
Luminous Red Galaxies in the SDSS Daniel Eisenstein ( University of Arizona) with Blanton, Hogg, Nichol, Tegmark, Wake, Zehavi, Zheng, and the rest of.
How Different was the Universe at z=1? Centre de Physique Théorique, Marseille Université de Provence Christian Marinoni.
Clustering of BzK-selected galaxies in the COSMOS field Xu KONG collaborators : A. Renzini, E. Daddi, N. Arimoto, A. Cimatti , COSMOS.
Distance Indicators and Peculiar Velocities Status of the 6dFGS V-survey Lachlan Campbell, RSAA/AAO 6dFGS Workshop April 2005.
Red-Sequence Galaxies with young stars and dust The cluster A901/902 seen with COMBO-17 Christian Wolf (Oxford) Meghan E. Gray (Nottingham) Klaus Meisenheimer.
KASI Galaxy Evolution Journal Club A Massive Protocluster of Galaxies at a Redshift of z ~ P. L. Capak et al. 2011, Nature, in press (arXive: )
The XMM Distant Cluster Project: Survey limits and Pilot Survey Georg Lamer A. Schwope, V. Hambaryan, M. Godolt (AIP) H. Böhringer, R. Fassbender, P. Schücker,
Carlos Hernández-Monteagudo CE F CA 1 CENTRO DE ESTUDIOS DE FÍSICA DEL COSMOS DE ARAGÓN (CE F CA) J-PAS 10th Collaboration Meeting March 11th 2015 Cosmology.
ZCOSMOS galaxy clustering: status and perspectives Sylvain de la Torre Marseille - June, 11th Clustering working group: Ummi Abbas, Sylvain de la Torre,
ZCOSMOS 10k: The role of group environment on the morphological transformation of galaxies Katarina Kovač 1 and the zCOSMOS team* *The zCOSMOS team comprises.
COSMIC MAGNIFICATION the other weak lensing signal Jes Ford UBC graduate student In collaboration with: Ludovic Van Waerbeke COSMOS 2010 Jes Ford Jason.
VDM groups/clusters reconstruction A. Iovino - Milano - OAB O. Cucciati - Milano – Univ. Bicocca C. Marinoni - Marseille - CPT S. Bardelli Bologna – OABo.
AGN in the VVDS (Bongiorno, Gavignaud, Zamorani et al.) 1.What has been done: main results on Type 1 AGN evolution and accretion properties of faint AGN.
The cluster environment of high redshift FRI radio galaxies
Preliminary estimates
Photoz z=0.8 z=0.6 z=0.4 z=0.2 IAB<25 1.4Mio galaxies X-ray
Dynamics at high redshifts:
Presentation transcript:

The zCOSMOS 3D density field Katarina Kovač 1, Simon Lilly 1, C. Porciani 1, O. Cucciati 2, A. Iovino 2, C. Knobel 1, C.M. Carollo 1, P. Oesch 1, A. Finoguenov 3 and the zCOSMOS team* *The zCOSMOS team comprises over 50 scientists; the main institutes involved are 1 ETH Zürich, LAM Marseille, 2 INAF Milan, Univ. Bologna, 3 MPE Garching and LAOMP Toulouse

zCOSMOS (600 hrs on VLT, started April 2005): - in the COSMOS field -about 20,000 spectra 0.1 < z < 1.4 in “- bright”: I AB < 22.5 over 1.7 deg 2 -about 10,000 spectra 1.4 < z < 3.5 in “- deep”: colour-selection, B < 25, over 0.9 deg 2 -designed for high success rate (~ 90% in bright, ~ 80% in deep) -and high sampling rate (~ 70%) with multiple passes (8 in bright, 4 in deep) -with velocity accuracy of 100 kms -1 in bright, 300 kms -1 in deep -duplication in spectral data reduction, redshift identification and other measurements 2’ 6.5’ 7.5’

Despite already covering most of the COSMOS field, the N(z) is very highly structured to z ~ 1: zCOSMOS - observations so far Currently, about spectra (10k “observed” sample) of the zCOSMOS-bright survey are reduced, from the underlying sample of about galaxies with I AB < 22.5 mag (40k “parent” sample), or about galaxies with I AB < 24 mag (100k sample).

10k spectroscopic verification and photo-z consistency (1)593 repeated spectra  probabilistic verification of spectroscopic Confidence Classes plus measurement of velocity accuracy  v = 108 kms -1 (2)Comparison with photo-z (ZEBRA: Capak 2006 catalogue (old K)+IRAC, calibrated on old 1k sample):  z = 0.03(1+z). Class % of sample spectral verification photo-z consistency 428%99.6%96.4% 334%99.9%95.5% 215%92%93% one line6.4%90%95% 19.4%72%73% 07.8%-- Redshift reliability => 85% reliable redshifts

Reconstruction of the galaxy density field: ● One of the major goals of the zCOSMOS survey is to study galaxy environments, ranging from the scales of 100 kpc (galaxy groups) to the scales of 100Mpc. We use both galaxies with the spectroscopic and photometric redshifts to reliable reconstruct the broad range of environments. ● galaxies are correlated! ● ZADE approach: use the nearby spectro-z objects to modify photo-z P(z) of the rest of the population: PZ(z)dz = Nspec (R<RZADE)* P(z)dz / ∫P(z)dz

I AB < 22.5 mag red: ZEBRA output blue: RZADE <= 1 Mpc/h black: RZADE <= 5 Mpc/h magenta: RZADE <= 10 Mpc/h ZADE in work

Density estimate:  on a grid, counting the n-nearest neighbours all (parts of) galaxies within +/ km/s  n = n(+1)/S n ; S n = (D n ) 2  RZADE = 5 Mpc/h Testing the method

Testing the method – cont.

zCOSMOS (over)density field



Density-colour relation Complete sample: M B > -20-z

Density-morphology relation Complete sample: M B > -20-z ZEST morphologies (Scarlata et al. 2007) Also Tasca et al. in prep.

Conclusions ● zCOSMOS so far: spectra, high reliability 85% ● ZADE approach able to reproduce structures on a large range of scales ● ZADE advantage over 10k: smaller N, no need to model the complicated 10k sampling and z-success functions ● ZADE works also with the fixed apertures; and using the fainter galaxies ● Density-colour and density-morphology relations hold up-to higher redshifts (z~0.5 at least) ● Exploration: 1) properties of galaxies as a function of environment 2) galaxy – dark matter bias 3) structure extraction