Automatic Projector Calibration Using Self-Identifying Patterns Mark Fiala Computational Video Group Institute of Information Technology National Research.

Slides:



Advertisements
Similar presentations
Real-Time Projector Tracking on Complex Geometry Using Ordinary Imagery Tyler Johnson and Henry Fuchs University of North Carolina – Chapel Hill ProCams.
Advertisements

Turning Point Signaling System Getting Students into the Game Getting Students into the Game.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Introduction to Computers Section 10A. home Presentation Programs Provide powerful design tools to outline, create, edit, arrange and display complex.
T h e U n i v e r s i t y o f B r i t i s h C o l u m b i a Bi-Level Image Compression EECE 545: Data Compression by Dave Tompkins.
A Distributed Cooperative Framework for Continuous Multi- Projector Pose Estimation IEEE VR March 16, 2009 Tyler Johnson, Greg Welch, Henry Fuchs,
A Unified Multi-Surface, Multi- Resolution Workspace with Camera-Based Scanning and Projector- Based Illumination Tyler Johnson and Henry Fuchs University.
המעבדה למערכות ספרתיות מהירות High speed digital systems laboratory הטכניון - מכון טכנולוגי לישראל הפקולטה להנדסת חשמל Technion - Israel institute of.
Презентація за розділом “Гумористичні твори”
Центр атестації педагогічних працівників 2014
Галактики і квазари.
Характеристика ІНДІЇ.
Процюк Н.В. вчитель початкових класів Боярської ЗОШ І – ІІІ ст №4
CSE 111 Representing Nonnumeric Data in a Computer.
Monitors and Sound Systems section 3A This lesson includes the following sections: · Monitors · PC Projectors · Sound Systems.
Professional Projectors Example Test Patterns For Demo and Test Uses June ‘07 For projector evaluation purposes, please make sure all the projectors are.
MAT 1000 Mathematics in Today's World Winter 2015.
Supporting Beyond-surface Interaction for Tabletop Systems by Integrating IR Projections Hui-Shan Kao.
Data and Computer Communications by William Stallings Eighth Edition Digital Data Communications Techniques Digital Data Communications Techniques Click.
5: DataLink Layer5-1 Error Detection EDC= Error Detection and Correction bits (redundancy) D = Data protected by error checking, may include header fields.
1 COMS 161 Introduction to Computing Title: The Digital Domain Date: September 6, 2004 Lecture Number: 6.
Духовні символи Голосіївського району
1 © Unitec New Zealand CRC calculation and Hammings code.
10.1 Chapter 10 Error Detection and Correction Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Spring 2007 COMP TUI 1 Computer Vision for Tangible User Interfaces.
1 IR Camera IR Projector Camera View Projector image Projection View Result View Projection Warp image Camera Warp image Result View Hc Hp From Camera.
Using Adaptive Tracking To Classify And Monitor Activities In A Site W.E.L. Grimson, C. Stauffer, R. Romano, L. Lee.
Introduction to Computers Lesson 3A. home Two Kinds of Monitors Cathode ray tube (CRT) Flat-panel display.
Channel Capacity. Techniques to reduce errors in digital communication systems Automatic repeat request (ARC) Forward error correction (FEC) Channel.
Jay Summet -Intel Mentor: Rahul Sukthankar BurningWell Micro-controller based sensor localization and tracking system using projected light patterns GVU.
Computer Architecture Error Correcting Codes Ralph Grishman Oct (Text pp and B-65-67) NYU.
Projector-camera system Application of computer vision projector-camera v3a1.
MEGGIT DECODER. PROBLEM STATEMENT To correct all single errors in n-bit codeword, n error patterns of single errors and their corresponding syndromes.
What are the pros and cons of different image formatting?
Introduction to Communication Lecture (11) 1. Digital Transmission A computer network is designed to send information from one point to another. This.
Authors: Ning Bi, Qiyu Sun, Daren Huang, Zhihua Yang, Jiwu Huang Adviser: 席家年 Speaker: 黃敏虔 Date:2010/05/18 received July 29, 2006; revised April 24,2007;
Many to one/one to many Types of multiplexing Telephone system

Automatic Speaker Identification Using Sentinel Word Discrimination
Chapter 9 Error Detection and Correction
DATA COMMUNICATION Lecture-35.
Standard Array.
Lesson 3 & 4: Encoding Images
Chapter 10 Error-Control Coding.

Проф. д-р Васил Цанов, Институт за икономически изследвания при БАН
ЗУТ ПРОЕКТ на Закон за изменение и допълнение на ЗУТ
О Б Щ И Н А С И Л И С Т Р А П р о е к т Б ю д ж е т г.
Електронни услуги на НАП
Боряна Георгиева – директор на
РАЙОНЕН СЪД - БУРГАС РАБОТНА СРЕЩА СЪС СЪДЕБНИТЕ ЗАСЕДАТЕЛИ ПРИ РАЙОНЕН СЪД – БУРГАС 21 ОКТОМВРИ 2016 г.
Сътрудничество между полицията и другите специалисти в България
Съобщение Ръководството на НУ “Христо Ботев“ – гр. Елин Пелин
НАЦИОНАЛНА АГЕНЦИЯ ЗА ПРИХОДИТЕ
ДОБРОВОЛЕН РЕЗЕРВ НА ВЪОРЪЖЕНИТЕ СИЛИ НА РЕПУБЛИКА БЪЛГАРИЯ
Съвременни софтуерни решения
ПО ПЧЕЛАРСТВО ЗА ТРИГОДИШНИЯ
от проучване на общественото мнение,
Васил Големански Ноември, 2006
Програма за развитие на селските райони
ОПЕРАТИВНА ПРОГРАМА “АДМИНИСТРАТИВЕН КАПАЦИТЕТ”
БАЛИСТИКА НА ТЯЛО ПРИ СВОБОДНО ПАДАНЕ В ЗЕМНАТА АТМОСФЕРА
МЕДИЦИНСКИ УНИВЕРСИТЕТ – ПЛЕВЕН
Стратегия за развитие на клъстера 2015
Моето наследствено призвание
Правна кантора “Джингов, Гугински, Кючуков & Величков”
Безопасност на движението
Chapter 9 Error Detection and Correction
Lesson 3 & 4: Encoding Images
Error Detection Learning Objectives:
Presentation transcript:

Automatic Projector Calibration Using Self-Identifying Patterns Mark Fiala Computational Video Group Institute of Information Technology National Research Council

Problem: Geometrically and Photometrically calibrate multiple projector array Application: large arrays of projector or monitor display elements

Solution: Use ARTag self-identifying markers to find correspondence points Locate white and black points for photometric calibration ARTag markers

ARTag patterns displayed at multiple resolutions from each display element (projector/monitor) Locate corner points for geometric calibration

ARTag Fiducial Marker System bi-tonal (only black and white) 4 corners: for 6-DOF camera/pattern pose determination Digital Methods: Error Correction, CRC-16 Checksum

ARTag Creating Markers: Encoding codes Detecting Markers: Identification and decoding 2002 possible markers