Extra Physics with an Atomic Beam Source and a Lamb-Shift Polarimeter

Slides:



Advertisements
Similar presentations
The Hadron Physics Program at COSY-ANKE: selected results
Advertisements

Mitglied der Helmholtz-Gemeinschaft TSU HEPI Double-polarised np-scattering experiments at ANKE David Mchedlishvili for the ANKE collaboration HEPI, Tbilisi.
Photo-Nuclear Physics Experiments by using an Intense Photon Beam Toshiyuki Shizuma Gamma-ray Nondestructive Detection Research Group Japan Atomic Energy.
1 First Measurement of the Structure Function b 1 on Tensor Polarized Deuteron Target at HERMES A.Nagaitsev Joint Institute for Nuclear Research, Dubna.
Spin Filtering Studies at COSY and AD Alexander Nass for the collaboration University of Erlangen-Nürnberg SPIN 2008, Charlottesville,VA,USA, October 8,
Patricia Aguar Bartolomé Institut für Kernphysik, Universität Mainz PSTP 2013 Workshop, Charlottesville 11th September 2013.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
55. Jahrestagung der ÖPG, September 2005 Pionischer Wasserstoff: Präzisionsmessungen zur starken Wechselwirkung J. Marton Stefan Meyer Institut der ÖAW.
M. Vogel for the SPECTRAP collaboration PRECISION SPECTROSCOPY ON HIGHLY CHARGED IONS.
R. D. Foster, C. R. Gould, D. G. Haase, J. H. Kelley, D. M. Markoff, (North Carolina State University and TUNL), W. Tornow (Duke University and TUNL) Supported.
Frictional Cooling MC Collaboration Meeting June 11-12/2003 Raphael Galea.
Search for the Electron Electric Dipole Moment Val Prasad Yale University Experiment: D.DeMille, D. Kawall, R.Paolino, V. Prasad F. Bay, S. Bickman, P.Hamilton,
The Forbidden Transition in Ytterbium ● Atomic selection rules forbid E1 transitions between states of the same parity. However, the parity-violating weak.
European Joint PhD Programme, Lisboa, Diagnostics of Fusion Plasmas Spectroscopy Ralph Dux.
Stefan Truppe MEASUREMENT OF THE LOWEST MILLIMETER- WAVE TRANSITION FREQUENCY OF THE CH RADICAL.
Mitglied der Helmholtz-Gemeinschaft DSMC simulations of polarized atomic beam sources including magnetic fields September 13, 2013 | Martin Gaisser, Alexander.
DeMille Group Dave DeMille, E. Altuntas, J. Ammon, S.B. Cahn, R. Paolino* Physics Department, Yale University *Physics Department, US Coast Guard Academy.
Spin physics at Storage Rings
October 3, 2006E. Steffens – Spin The HERMES Polarized H&D Gas Target: 10 Years of Operation Erhard Steffens University of Erlangen-Nürnberg and.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Deuterium/Hydrogen Molecules Possible Fuel for Nuclear Fusion Reactors? by Ralf Engels.
Polarization Facilities at COSY September 11, 2007 D.Eversheim, PSTP How Everything Began The CBS for COSY Overcoming Depolarizing Resonances The.
TRIµP Laser Spectroscopy: Status and Future U Dammalapati TRI  P Facility Lasers for Na  -decay Ra Spectroscopy & EDM Towards cooling of Heavy Alkaline.
Lecture on Targets A. Introduction scattering exp., gas target, storage ring B. Basics on Vacuum, Gas Flow etc pumps, molecular flow & tubes, T-shaped.
Laser-microwave double resonance method in superfluid helium for the measurement of nuclear moments Takeshi Furukawa Department of Physics, Graduate School.
Collinear laser spectroscopy of 42g,mSc
Mitglied der Helmholtz-Gemeinschaft Petersburg Nuclear Physics Institute, Russia Storage cells for internal experiments with Atomic Beam Source at the.
Zoran Andjelkovic Johannes Gutenberg Universität Mainz GSI Darmstadt Laser Spectroscopy of Highly Charged Ions and Exotic Radioactive Nuclei (Helmholtz.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Hydrogen/Deuterium Molecules A new Option for Polarized Targets? by Ralf Engels JCHP.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
E. Widmann, Antihydrogen GS-HFS, p. 1 LEAP03, Yokohama, March 4, 2003 Measurement of the Hyperfine Structure of Antihydrogen E. Widmann, R.S. Hayano, M.
Motivation Polarized 3 He gas target Solenoid design and test 3 He feasibility test Summary and outlook Johannes Gutenberg-Universit ä t Mainz Institut.
Mitglied der Helmholtz-Gemeinschaft Polarized Fusion by Giuseppe Ciullo INFN and University of Ferrara for Ralf Engels JCHP / Institut für Kernphysik,
Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8 Zheng-Tian Lu Argonne National Laboratory University of Chicago Funding: DOE, Office of.
Progress of the Laser Spectroscopy Program at Bridgewater State College Greg Surman, Brian Keith, and Edward Deveney Department of Physics, Bridgewater.
FLAR project S.L. Yakovenko JINR, Dubna,Russia. 2 Contents 1.FlAIR project 2.AD facility at CERN 3.Antyhydrogen and Positronium in-flight at FLAIR 4.LEPTA.
Normalization of the NPDGamma Experimental Data F. Simmons, C. Crawford University of Kentucky, for the NPDGamma collaboration Background: NPDγ Experiment.
Mitglied der Helmholtz-Gemeinschaft TSU TBILISI STATE UNIVERSITY The pn-system Study at Internal ANKE Experiment HEPI, Tbilisi State University IKP, Forschungszentrum.
Towards the production of an anti-hydrogen beam Simon Van Gorp1, Y.Enomoto1, N.Kuroda2, K.Michishio3, D.J.Murtagh1, S.Ulmer1,, H. Higaki, C.H.Kim2, Y.Nagata1,
The tensor analysing power component T 21 of the exclusive π - - meson photoproduction on deuteron in the resonance region. V.N.Stibunov 1, L.M. Barkov.
Lecture 3 16/9/2003 Recall Penning Trap orbits cylindrical coordinates: ( , ,z); B = constant along z radial (  ) and axial (z) electric.
Precision tests of bound-state QED: Muonium HFS etc Savely G Karshenboim D.I. Mendeleev Institute for Metrology (St. Petersburg) and Max-Planck-Institut.
Status of the Source of Polarized Ions project for the JINR accelerator complex (June 2013) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev.
Mitglied der Helmholtz-Gemeinschaft Physics at COSY-Jülich December 2010 | Hans Ströher (Forschungszentrum Jülich, Univ. Cologne) Baryons´10, Osaka (Japan),
Laser-Driven H/D Target at MIT-Bates Ben Clasie Massachusetts Institute of Technology Ben Clasie, Chris Crawford, Dipangkar Dutta, Haiyan Gao, Jason Seely.
Toward a Stark Decelerator for atoms and molecules exited into a Rydberg state Anne Cournol, Nicolas Saquet, Jérôme Beugnon, Nicolas Vanhaecke, Pierre.
TENSOR POLARIZED DEUTERON BEAM AT THE NUCLOTRON Yu.K.Pilipenko, V.P.Ershov, V.V.Fimushkin, A.Yu.Isupov, L.V.Kutuzova, V.P.Ladigin, N.M.Piskunov, V.P.Vadeev,
FLAIR meeting, GSI March Positron Ring for Antihydrogen Production A.Sidorin for LEPTA collaboration JINR, Dubna.
First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE-Collaboration Institut für Kernphysik, Forschungszentrum.
Perspectives for polarized antiprotons Paolo Lenisa Università di Ferrara and INFN - Italy Perspectives for Polarized Antiprotons MENU 2013 – Rome, September.
1 Possibility to obtain a polarized hydrogen molecular target Dmitriy Toporkov Budker Institute of Nuclear Physics Novosibirsk, Russia XIV International.
The Polarized Internal Target at ANKE: First Results Kirill Grigoryev Institut für Kernphysik, Forschungszentrum Jülich PhD student from Petersburg Nuclear.
Source of Polarized Ions for the JINR accelerator complex (September 2015) V.V. Fimushkin, A.D. Kovalenko, L.V. Kutuzova, Yu.V. Prokofichev, V.B. Shutov.
Polarized source upgrade RSC, January 11, OPPIS LINAC Booster AGS RHIC ( ) ∙10 11 p/bunch 0.6mA x 300us→11∙10 11 polarized H - /pulse. ( )
The Polarized Internal Gas Target of ANKE at COSY
The HITRAP Project at GSI For the HITRAP collaboration: Frank Herfurth GSI Darmstadt.
Spatial distributions in a cold strontium Rydberg gas Graham Lochead.
Institute for Nuclear Physics Ralf Gebel – PSTP 2007 – September 2007 Facility overview Ion sources at COSY R&D details.
Production of vibrationally hot H 2 (v=10–14) from H 2 S photolysis Mingli Niu.
Mitglied der Helmholtz-Gemeinschaft Development of 3D Polarimeters for storage ring EDM searches JEDI Collaboration | David Chiladze (IKP, Forschungszentrum.
Past Fermilab Accumulator Experiments Antiproton Source Accumulator Ring (Inner Ring) Debuncher Ring (Outer Ring) AP50 Experiment Area PRECISION Precision.
Mitglied der Helmholtz-Gemeinschaft Summary of the target session of the IEB Workshop June 19, 2015 | Alexander Nass.
Test of Variation in m p /m e using 40 CaH + Molecular Ions in a String Crystal NICT Masatoshi Kajita TMU Minori Abe We propose to test the variation in.
10/10/2008 Mitglied der Helmholtz-Gemeinschaft First Experiments with the Polarized Internal Gas Target (PIT) at ANKE/COSY Ralf Engels for the ANKE collaboration.
JLEIC ion source: specifications, design, and R&D prospects
Two-Photon Absorption Spectroscopy of Rubidium
Polarized Positrons at Jefferson Lab
Strong Coupling of a Spin Ensemble to a Superconducting Resonator
Production and Storage of Polarized H2, D2 and HD Molecules
Recent results from BLAST detector
Presentation transcript:

Extra Physics with an Atomic Beam Source and a Lamb-Shift Polarimeter on the LEAP conference Extra Physics with an Atomic Beam Source and a Lamb-Shift Polarimeter by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich 13.09.2011 Dr. Ralf Engels 25.06.2009

Bound β decay PIT@ANKE Precision Spectroscopy of H and D Introduction Bound β decay Precision Spectroscopy of H and D Polarized Molecules PIT@ANKE

with momenta up to 3.7 GeV/c PIT@ANKE p, p, d, d with momenta up to 3.7 GeV/c internal experiments – with the circulating beam external experiments – with the extracted beam

ABS and Lamb-shift polarimeter 6-pole magnet rf-transition 6-pole magnet Dr. Ralf Engels 25.06.2009

The Breit-Rabi Diagramm for n=2

The Spinfilter t= 0.14 s t= 10-9 s

The Breit-Rabi Diagramm for n=2 1.609 GHz

The Spinfilter

The Spinfilter

The Spinfilter Q = f0/Δf = 1600

The Spinfilter Lyman-α Spectrum for Deuterium and Hydrogen mI= 0 Photons per second mI= + 1/2 mI= - 1/2 Magnetic field [mT]

The Spinfilter Polarized Lyman-Spectrum: pz = + 0.861 ± 0.005 Photons per second Magnetic field [mT]

PIT @ ANKE/COSY Main parts of a PIT: Atomic Beam Source Target gas hydrogen or deuterium H beam intensity (2 hyperfine states) 8.2 . 1016 atoms / s Beam size at the interaction point σ = 2.85 ± 0.42 mm Polarization for hydrogen atoms PZ = 0.89 ± 0.01 PZ = -0.96 ± 0.01 Lamb-Shift Polarimeter Storage Cell Dr. Ralf Engels 25.06.2009

More Experiments with ABS and LSP 2.) Bound β Decay 3.) Precision Spectroscopy of Hydrogen / Deuterium 4.) Polarized H2 Molecules --

The Bound-β Decay (Tech. Uni. Munich) n p + e + ʋe Efficiency: 4 · 10-6 n H(1S) + ʋe QH = 325.7 eV Efficiency: ~ 10-1 n H(2S) + ʋe QH = 325.7 eV L.L. Nemenov, Sov. J. Nucl. Phys. 31 (1980)

Helicity of the Antineutrino: right-handedness The Neutron Decay Helicity of the Antineutrino: right-handedness ʋ n p e- Wi (%) F mF HFS 44.14 0,1 0 α2, β4 55.24 0,1 0 β4, α2 0.62 1 1 α1 0 1 -1 β3 0 0,1 0 β4,α2 0 0,1 0 α2,β4 → left handed admixtures ? → scalar or tensor contributions to the weak force ?

? Core Problem: How to register single metastable hydrogen atoms? The Neutron Decay Reactor: FRM II Sona- Transition Spinfilter Core α 1 α 2 ? H2S β 3 B-Field Problem: How to register single metastable hydrogen atoms? (Count rates: H1S: 3 s-1 / H2S: 0.3 s-1 / H2S(α2): ≤ 0.1 s-1)

The Neutron Decay 1. Selective Ionization with 2 Laser (Hänsch et al.) Advantage: - Efficiency ~50 % expected Problems: - Not used before - Very expensive and difficult (Resonator: 20 kW !!!) - Background free ? 2. Lyman-α detection with PM Advantage: - Used before (PM: sensitive to 110-135 nm) Problems: - QE: ~10 % / LSP: Efficiency: 10-3 - Ideas: a.) Mirrors for 121 nm → 5 % possible ? b.) Photoeffect–Chamber → 80 % possible ?

The Neutron Decay Method 2: Lyman-α detection with PM / Channeltron Mirrors Photoeffect PM Channeltron +2000 V - 100 V e- H2S Lyα H1S H2S H1S Lyα - 300 V Al mirrors First Tests in November CsI: 50% are possible Problem: High background

The Neutron Decay 1. Selective Ionization with 2 Laser (Hänsch et al.) Advantage: - Efficiency ~50 % expected Problems: - Not used before - Very expensive and difficult (Resonator: 20 kW !!!) - Background free ? 2. Lyman-α detection with PM Advantage: - Used before (PM: sensitive to 110-135 nm) Problems: - QE: ~10 % / LSP: Efficiency: 10-3 - Ideas: a.) Mirrors for 121 nm → 5 % possible ? b.) Photoeffect–Chamber → 80 % possible ? 3. Charge Exchange at Ar (K) Advantage: - Used before (pol. Lamb-shift source) Problems: - Efficiency: ~10 %, can not be increased much - Background free ? → Energy-separation necessary

The Neutron Decay 3. Charge Exchange at Ar (K) H2S + Ar → H- + Ar+ Argon Cell P= ~ 1 mbar H1S H H2S H Bending Magnet Q = 325 eV Position Sensitive Detector

First Tests of Method 3 V I H1S: E = (501.9 ± 0.1) eV Spinfilter Ar Cell H2S H2S + H1S H V I H1S: E = (501.9 ± 0.1) eV σ = (3.8 ± 0.1) eV H2S: E = (511.8 ± 0.2) eV σ = (3.1 ± 0.1) eV ΔΕ2S-1S = (9.9 ± 0.2) eV (Ly-α: 121 nm ≈ 10.2 eV) Paper is in preparation

Precision Spectroscopy of H and D for n=2: Actual Status 177556834.3 (6.7) Hz Kolachevsky et al. 2009 177556785 (29) Hz Rothery and Hessels 2000 charge distribution of the proton (deuteron) classical Lamb shift 1057.8446(29) MHz Schwob et al. 1999 1057.842(4) MHz Pachucki 2001 59.22(14) MHz Lundeen et al. 1975 59.2212(?) MHz Moskovkin et al. 2007 Dr. Ralf Engels 25.06.2009

Breit-Rabi Diagram M1 Dr. Ralf Engels 25.06.2009

How to measure the HFS of the 2S1/2 state Dr. Ralf Engels 25.06.2009

Advantages of this method - natural linewidth: 1.1 Hz - High Intensity: 1.5 μA protons → 1011 H(α1) /s → 105 photons/s - direct measurement - Doppler free (2nd order can be measured) - monochromatic beam energy can be changed: rel. /quadratic Doppler measurable - HFS 2S1/2 can be measured without knowing the absolute strength of the magnetic field B in the interaction region - relative magnetic field strength can be measured with the α1 ↔ α2 transition α1 α2 F=1 2S1/2 fhfs(2S1/2) = f (α1 - β4) – f (α2 - β3) HFS 2S1/2 β3 = f (α1 – α2) + f (β3 – β4) F=0 β4 B=0 B≠0 Dr. Ralf Engels 25.06.2009

The Breit-Rabi Diagramm

Breit-Rabi Diagram at Large Magnetic Fields [eV] mI= +1/2 mJ= +1/2 mI= -1/2 EHFS 2S1/2 mI= -1/2 mI= +1/2 mI= +1/2 mJ= -1/2 mI= -1/2 1 2 [T] gK μK + gB μB BE= EHFS = 2.0882 T 2 gK μK gB μB (R.S. Dickson and J.A. Weil; Am. J. Phys. 59 (2) 1991 is wrong !!!)

Breit-Rabi Diagram E1

How to measure the classical Lamb shift and the HFS of the 2P1/2 state ~260 mm Possible Transitions: B ┴ v: α1 → f4 (α1 → e2) : α2 → f3 (α2 → e1) B ║ v: α1 → e1 : α2 → e2 (α2 → f4) ~113 mm FWHM ~ 100MHz Dr. Ralf Engels 25.06.2009

The TEM waveguide Dr. Ralf Engels 25.06.2009

Preliminary Results (B~0 G) B ┴ v: α1 B ┴ v: α2 2P1/2 Hyperfine Splitting classical Lamb shift Experiment Theory Experiment Theory 59.98(2.03) MHz 59.2212 MHz 1057.34(1.11) MHz 1057.842(4) MHz Westig (Cologne Uni.) Moskovkin et al. 2007 Westig (Cologne Uni.) Pachucki 2001 59.22(14) MHz Lundeen et al. 1975 1057.8446(29) MHz Schwob et al. 1999 Westig et al.; Eur. Phy. J. D 57, 27-32 (2010) Dr. Ralf Engels 25.06.2009

Preliminary Results (B= 26.8 and 54.3 G) B ┴ v: α2 26.8(5) G B ┴ v: α2 54.3(5) G Dr. Ralf Engels 25.06.2009

Uncertainty - Statistics: E1 transitions: 107 photons/s → in 20 min: Δ ~ 1 kHz M1 transitions: 105 photons/s → in 20 min: Δ < 1 Hz - Doppler effect: - longitudinal suppressed (k ┴ v) - relativistic and transversal can be measured - Magnetic field: - Homogeneity up to now: ± 0.5 G → Δ ~ 1 MHz !!! - Magnetic field direction not well fixed (B ~ 0 G) !!! - Power measurement of the rf: - up to now: Δ P ~ 3% → Δ ~ 100 kHz (E1) (New device: Δ P ~ 0.002 % are possible !) - Heisenberg: 1~ Δt * Δf → HWHH ~ 40 MHz (for 1 keV proton beam) Electric Fields, Motional Stark Effect, ... ? Dr. Ralf Engels 25.06.2009

How to measure the HFS of the 2P1/2 state and the Lamb shift α1 HFS 2S1/2= f(α1 - β4) - f(α2 - β3) α2 F=1 2S1/2 HFS 2S1/2 β3 F=0 B=0 β4 B≠0 Lamb shift B' 1057 MHz e1 e2 F=1 2P1/2 HFS 2P1/2 f3 F=0 B=0 B≠0 f4 HFS 2P1/2 = [f(α1 - f4) - f(α2 - f3)] - [f(α1 - e1) - f(α2 - e2)] B ┴ v B ║ v Dr. Ralf Engels 25.06.2009

Uncertainty

Uncertainty - Statistics: E1 transitions: 107 photons/s → in 20 min: Δ ~ 1 kHz M1 transitions: 105 photons/s → in 20 min: Δ < 1 Hz - Doppler effect: - longitudinal suppressed (k ┴ v) - relativistic and transversal can be measured - Magnetic field: - Homogeneity up to now: ± 0.5 G → Δ ~ 1 MHz !!! - Magnetic field direction not well fixed (B ~ 0 G) !!! - Power measurement of the rf: - up to now: Δ P ~ 3% → Δ ~ 100 kHz (E1) (New device: Δ P ~ 0.002 % are possible !) - Heisenberg: 1~ Δt * Δf → HWHH ~ 40 MHz (for 1 keV proton beam) Electric Fields, Motional Stark Effect, ... ? Dr. Ralf Engels 25.06.2009

Summary Measurement of the complete Breit-Rabi Diagram for n=2 for H and D 2S1/2 state: 1. Step (magnetic) 2. Step (SOF) 3. Step (ABS) 2P1/2 state: Lambshift: 2P3/2 state g-factor: 10-5 g-factor: 10-6 g-factor: 10-8 HFS: 1 kHz HFS: 100 Hz HFS: 10 – 1 Hz g-factor: 10-4 g-factor: 10-5 g-factor: 10-6 HFS: 10 kHz HFS: 10-1 kHz 10 kHz ? 100 Hz HFS: 10 kHz HFS: 1 kHz g-factor: 10-4 g-factor: 10-5 HFS: 100 Hz An alternative method to measure g-factors, the Lamb shift and the hyperfine splittings for Anti-Hydrogen at FAIR ? 26.04.2017 by Ralf Engels

by Ralf Engels 26.04.2017 Ramsey: SOF-Method (1950) Lundeen, Jessop and Pipkin, Phys. Rev. Lett. 34 (1975) 26.04.2017 by Ralf Engels by Ralf Engels

Outlook What else ? - Deuterium (tritium) is possible (α1, α2 and α3) [D21 Theory] Other atoms are possible: 3He, ... Methode will work for Antihydrogen: During recombination of antiproton and positron up to 30% of the antihydrogen ends up as metastable atoms in the 2S1/2 state !!! - PM registrates single photons - Huge range of beam energies is possible: 1/40 ↔ 2000 eV (smaller energy → smaller spinfilter → higher intensity) Intensity: count rate 1 Photon/s ↔ 103-4 H(2S)/s now ! H Hyperfine Splittings of the 2S1/2, 2P1/2 (2P3/2) and the classical Lamb shift can be measured with the spinfilter. Dr. Ralf Engels 25.06.2009

Outlook: Parity Violation β e Direct transitions between β and e states are not allowed !!! ( Parity conservation ) Weak force is part of the binding energy of the S states !!! Weak force parity violation → β-e transitions are possible (R.W. Dunford and R.J. Holt; J. Phys. G 34 (2007) 2099-2118)

Performance of PIT using atomic beams saturates! Polarized H2 Molecules Beam intensities of conventional ABS barely reach ~1017 at/s  target density dt~1014 at/cm2 (typical T-shaped storage cell) Depolarization at low T of storage cell don’t allow further cooling Performance of PIT using atomic beams saturates! Polarized molecules? New storage cell materials

Polarized H2 Molecules Sticking time of molecules at the surface is much smaller compared to atoms  cell can be cooled down to much lower T  higher target density (dt ~ T-1/2) Polarized molecules is an interesting object for atomic physics which has never been deeply investigated (e.g. depolarization on the surface) Recombination of polarized atoms in different hyperfine states is interesting to astrophysics (e.g. formation of molecular hydrogen in cold clouds)

Polarized H2 Molecules Is there a way to increase Measurements from NIKHEF, IUCF, HERMES show that recombined molecules retain fraction of initial nuclear polarization of atoms! polarized unpolarized Pm = 0.5 Naïve model Is there a way to increase Pm (surface material, T, B etc)? Nuclear Polarization of Hydrogen Molecules from Recombination of Polarized Atoms T.Wise et al., Phys. Rev. Lett. 87, 042701 (2001).

Polarized H2 Molecules Recombination of polarized atoms into molecules cell wall B ~ 1T Recombination of polarized atoms into molecules Conversion of polarized atoms and molecules into ions Conversion of H2+ and H+ ions into protons with different energy (suggested by W.Haeberli) Separation of protons by energy Measurement of proton polarization in LSP

Polarized H2 Molecules Setup overview ISTC Project # 1861 PNPI, FZJ, Uni. Cologne DFG Project: 436 RUS 113/977/0-1 Setup overview

Polarized H2 Molecules

Superconducting Solenoid Polarized H2 Molecules Superconducting Solenoid SC wire NiTi+Cu (Ø 0.5 mm) Nominal current 50 A  B ~ 1 T Degradat ion of frozen field ≤ 0.1% per 5 hrs LHe consumption ~ 8 l/h 500 mm

Polarized H2 Molecules e―-gun and ion optics Corresponds to ABS beam 200 mm -10 kV 0 kV +11 kV 200 mm  LSP requires ~1010 protons/s

Polarized H2 Molecules Magnetic field dependence Very preliminary Cell coating: Au Cell temperature: 80K Low polarization??? misalignment of quantization axis? T too low? Au is not an appropriate material? Very preliminary

Polarized H2 Molecules 0.5 0.4 0.3 ? 0.2 0.1 Dr. Ralf Engels 25.06.2009

Polarized H2 Molecules Ratio of the ion beams intensity: ~ 1 : 2 0.6 0.5 0.4 0.3 Ratio of the ion beams intensity: ~ 1 : 2 0.2 (H2+ ions ?) 0.1

Polarized H2 Molecules 0.5 Preliminary ? 0.4 0.3 0.2 0.1

Other Projects: Polarized Anti-Proton Experiment (PAX) WASA Collaboration (Superconducting Solenoid) Dicroismus of Deuterons in Matter Seyfarth et al., accepted by Phys. Rev. Lett. in April 2010, Baryshevsky, Phys. Lett. A 171 (1992) 431 Lamb-Shift Polarimeter for the pol. Ion Source of COSY (pulsed H /D ions at 4 keV) - -

Spinfilter α β Dr. Ralf Engels 25.06.2009

Spinfilter Dr. Ralf Engels 25.06.2009

Lamb-Shift Polarimeter Dr. Ralf Engels 25.06.2009