Link Layer5-1 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing,

Slides:



Advertisements
Similar presentations
Ethernet “dominant” LAN technology: cheap $20 for 100Mbs!
Advertisements

Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r Homework 3 out r Project 3 out, link state only. Some slides are.
5: DataLink Layer5-1 Mac Addressing, Ethernet, and Interconnections.
1 Ethernet EECS 489 Computer Networks Z. Morley Mao Wednesday Feb 21, 2007 Acknowledgement: Some slides taken.
5: DataLink Layer5-1 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or.
5: DataLink Layer – Ethernet, Hubs and Switches.
1 Interconnection ECS 152A. 2 Interconnecting with hubs r Backbone hub interconnects LAN segments r Extends max distance between nodes r But individual.
MAC Addresses and ARP 32-bit IP address: –network-layer address –used to get datagram to destination IP subnet MAC (or LAN or physical or Ethernet) address:
5-1 Data Link Layer r Today, we will study the data link layer… r This is the last layer in the network protocol stack we will study in this class…
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
16 – CSMA/CD - ARP Network Layer4-1. 5: DataLink Layer5-2 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit.
IP Address 0 network host 10 network host 110 networkhost 1110 multicast address A B C D class to to
Review r Error Detection: CRC r Multiple access protocols m Slotted ALOHA m CSMA/CD r LAN addresses and ARP r Ethernet Some slides are in courtesy of J.
Introduction 1 Lecture 25 Link Layer (Ethernet, Switch) slides are modified from J. Kurose & K. Ross University of Nevada – Reno Computer Science & Engineering.
Lecture 8 Modeling & Simulation of Communication Networks.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer data center.
Chapter 5 Link Layer and LANs
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 26 Omar Meqdadi Department of Computer Science and Software Engineering.
Network LayerII-1 RSC Part II: Network Layer 4. IP in operation Redes y Servicios de Comunicaciones Universidad Carlos III de Madrid These slides are,
5: DataLink Layer5-1 LAN technologies Data link layer so far: m services, error detection/correction, multiple access Next: LAN technologies m addressing.
1 Random Access Protocols r When node has packet to send m transmit at full channel data rate R. m no a priori coordination among nodes  two or more transmitting.
Introduction1-1 Data Communications and Computer Networks Chapter 5 CS 3830 Lecture 27 Omar Meqdadi Department of Computer Science and Software Engineering.
LAN Technologies MAC protocols used in LANs, to control access to the channel Token Rings: IEEE (IBM token ring), for computer room, or department.
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Part 4: Link Layer addressing Ethernet Computer Networking: A Top Down Approach 6 th edition Jim Kurose,
Data Link Layer5-1 Review of MAC protocols channel partitioning, by time, frequency or code – Time Division, Frequency Division random access (dynamic),
5: DataLink Layer5-1 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
1 Computer Communication & Networks Lecture 13 Datalink Layer: Local Area Network Waleed Ejaz
Link Layer 5-1 Link layer, LAN s: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing,
1 John Magee 11 July 2013 CS 101 Lecture 11: How do you “visit” a web page, revisted Slides adapted from Kurose and Ross, Computer Networking 5/e Source.
Chapter 5 Link Layer Link Layer5-1 Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley Chapter5_2.
5: Link Layer Part Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Link Layer5-1 Synthesis: a day in the life of a web request  journey down protocol stack complete!  application, transport, network, link  putting-it-all-together:
CSCI 3335: C OMPUTER N ETWORKS A DAY IN THE LIFE OF A WEB REQUEST Vamsi Paruchuri University of Central Arkansas
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer LANs.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 Link Layer5-1.
5: DataLink Layer5-1 CSMA (Carrier Sense Multiple Access) CSMA: listen before transmit: If channel sensed idle: transmit entire frame r If channel sensed.
CS 1652 Jack Lange University of Pittsburgh 1. 5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram.
Link layer, LANs: outline
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
5: DataLink Layer5-1 Link Layer r 5.1 Introduction and services r 5.2 Error detection and correction r 5.3Multiple access protocols r 5.4 Link-Layer Addressing.
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
Link Layer5-1 Synthesis: a “day” in the life of a web request  journey down protocol stack!  application, transport, network, link  putting-it-all-together:
5: DataLink Layer5-1 Chapter 5 Link Layer and LANs Computer Networking: A Top Down Approach Featuring the Internet, 3 rd edition. Jim Kurose, Keith Ross.
EEC-484/584 Computer Networks Lecture 13 Wenbing Zhao
Chapter 5 Link Layer Computer Networking: A Top Down Approach 6 th edition Jim Kurose, Keith Ross Addison-Wesley March 2012 A note on the use of these.
EEC-484/584 Computer Networks Lecture 14 Wenbing Zhao
5: DataLink Layer5-1 Virtualization of networks Virtualization of resources: powerful abstraction in systems engineering: r computing examples: virtual.
5: DataLink Layer5-1 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame.
5: DataLink Layer5-1 Chapter 5: The Data Link Layer Our goals: r understand principles behind data link layer services: m error detection, correction m.
5: DataLink Layer5-1 Link-layer switches. 5: DataLink Layer5-2 Hubs … physical-layer (“dumb”) repeaters: m bits coming in one link go out all other links.
CSEN 404 Data Link Layer Amr El Mougy Lamia AlBadrawy.
CPSC 441: Link Layer1 Link Layer Addressing Slides originally from Carey Williamson Notes derived from “ Computer Networking: A Top Down Approach”, by.
5-1 Last time □ Multiple access protocols ♦ Channel partitioning MAC protocols TDMA, FDMA ♦ Random access MAC protocols Slotted Aloha, Pure Aloha, CSMA,
Link Layer 5.1 Introduction and services
Link Layer 5.1 Introduction and services
CS 280: Summary: A day in the life of a web request
Course Review 2015 Computer networks 赵振刚
MAC Addresses and ARP 32-bit IP address:
Hubs Hubs are essentially physical-layer repeaters:
University of Pittsburgh
ARP: Address Resolution Protocol
Mac Addressing, Ethernet, and Interconnections
Link layer, LANs: outline
Hubs Hubs are essentially physical-layer repeaters:
LAN Addresses and ARP IP address: drives the packet to destination network LAN (or MAC or Physical) address: drives the packet to the destination node’s.
Link Layer 5.1 Introduction and services
Presentation transcript:

Link Layer5-1 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing, ARP  Ethernet  switches  VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request

5: DataLink Layer5-2 MAC Addresses and ARP r 32-bit IP address: m network-layer address m used to get datagram to destination IP subnet r MAC (or LAN or physical or Ethernet) address: m used to get datagram from one interface to another physically-connected interface (same network) m 48 bit MAC address (for most LANs) burned in the adapter ROM

5: DataLink Layer5-3 LAN Addresses and ARP Each adapter on LAN has a unique LAN address Broadcast address = FF-FF-FF-FF-FF-FF = adapter 1A-2F-BB AD D7-FA-20-B0 0C-C4-11-6F-E F7-2B LAN (wired or wireless)

5: DataLink Layer5-4 LAN Address (more) r MAC address allocation administered by IEEE r manufacturer buys portion of MAC address space (to assure uniqueness) m Each vendor registers one or more 3 octet OUIs (Organizationally Unique Identifier ) m m Many Wireless LANs use MAC address for access control  MAC flat address ➜ portability m can move LAN card from one LAN to another r IP hierarchical address NOT portable m depends on IP subnet to which node is attached

Link Layer5-5 ARP: address resolution protocol ARP table: each IP node (host, router) on LAN has table  IP/MAC address mappings for some LAN nodes:  TTL (Time To Live): time after which address mapping will be forgotten (typically 20 min) Question: how to determine interface’s MAC address, knowing its IP address? 1A-2F-BB AD D7-FA-20-B0 0C-C4-11-6F-E F7-2B LAN

Link Layer5-6 ARP protocol: same LAN r A wants to send datagram to B m B’s MAC address not in A’s ARP table. r A broadcasts ARP query packet, containing B's IP address m dest MAC address = FF- FF-FF-FF-FF-FF m all nodes on LAN receive ARP query r B receives ARP packet, replies to A with its (B's) MAC address m frame sent to A’s MAC address (unicast) r A caches (saves) IP-to- MAC address pair in its ARP table until information becomes old (times out) m soft state: information that times out (goes away) unless refreshed r ARP is “plug-and-play”: m nodes create their ARP tables without intervention from net administrator

Link Layer5-7 walkthrough: send datagram from A to B via R m focus on addressing – at IP (datagram) and MAC layer (frame) m assume A knows B’s IP address m assume A knows IP address of first hop router, R (how?) m assume A knows R’s MAC address (how?) Addressing: routing to another LAN R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-8 Addressing: routing to another LAN IP Eth Phy IP src: IP dest:  A creates IP datagram with IP source A, destination B  A creates link-layer frame with R's MAC address as dest, frame contains A-to- B IP datagram MAC src: C-E8-FF-55 MAC dest: E6-E BB-4B

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-9 Addressing: routing to another LAN IP Eth Phy  frame sent from A to R IP Eth Phy  frame received at R, datagram removed, passed up to IP MAC src: C-E8-FF-55 MAC dest: E6-E BB-4B IP src: IP dest: IP src: IP dest:

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-10 Addressing: routing to another LAN IP src: IP dest:  R forwards datagram with IP source A, destination B  R creates link-layer frame with B's MAC address as dest, frame contains A-to- B IP datagram MAC src: 1A-23-F9-CD-06-9B MAC dest: 49-BD-D2-C7-56-2A IP Eth Phy IP Eth Phy

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-11 Addressing: routing to another LAN  R forwards datagram with IP source A, destination B  R creates link-layer frame with B's MAC address as dest, frame contains A-to- B IP datagram IP src: IP dest: MAC src: 1A-23-F9-CD-06-9B MAC dest: 49-BD-D2-C7-56-2A IP Eth Phy IP Eth Phy

R 1A-23-F9-CD-06-9B E6-E BB-4B CC-49-DE-D0-AB-7D C-E8-FF-55 A BD-D2-C7-56-2A B2-2F-54-1A-0F B Link Layer5-12 Addressing: routing to another LAN  R forwards datagram with IP source A, destination B  R creates link-layer frame with B's MAC address as dest, frame contains A-to- B IP datagram IP src: IP dest: MAC src: 1A-23-F9-CD-06-9B MAC dest: 49-BD-D2-C7-56-2A IP Eth Phy

Link Layer5-13 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing, ARP  Ethernet  switches  VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request

5: DataLink Layer5-14 Ethernet “dominant” wired LAN technology: r cheap $20 for 100Mbs! r first widely used LAN technology r Simpler, cheaper than token LANs and ATM r Kept up with speed race: 10 Mbps – 10 Gbps Metcalfe’s Ethernet sketch Old cable-line ethernet

5: DataLink Layer5-15 Bus topology r bus topology popular through mid 90s m all nodes in same collision domain (can collide with each other) bus: coaxial cable 10BASE2 cable showing BNC Connector end 10BASE2 cable with BNC T-Connector. 10BASE2 Pictures are from Wikipiedia

Star topology r today: star topology prevails m active switch in center m each “spoke” runs a (separate) Ethernet protocol (nodes do not collide with each other) 5: DataLink Layer5-16 switch star

5: DataLink Layer5-17 Images from / /

5: DataLink Layer5-18 Ethernet Frame Structure Sending adapter encapsulates IP datagram (or other network layer protocol packet) in Ethernet frame Preamble: r 7 bytes with pattern followed by one byte with pattern r used to synchronize receiver, sender clock rates MAC addr CRC-32

5: DataLink Layer5-19 Ethernet Frame Structure (more) r Addresses: 6 bytes m if adapter receives frame with matching destination address, or with broadcast address (eg ARP packet), it passes data in frame to net-layer protocol m otherwise, adapter discards frame r Type: indicates the higher layer protocol (mostly IP but others may be supported such as Novell IPX and AppleTalk) r CRC: checked at receiver, if error is detected, the frame is simply dropped

5: DataLink Layer5-20 Unreliable, connectionless service r Connectionless: No handshaking between sending and receiving adapter. r Unreliable: receiving adapter doesn’t send acks or nacks to sending adapter m Data field is 46bytes -1,500 bytes If data less than 46 bytes, stuff to be 46bytes –Network layer uses “ length ” field to remove stuffing.

5: DataLink Layer5-21 Ethernet uses CSMA/CD r No slots (no sync clock) m Preamble in Ethernet frame is used to sync clock between sender and receiver r adapter doesn’t transmit if it senses that some other adapter is transmitting, that is, carrier sense r transmitting adapter aborts when it senses that another adapter is transmitting, that is, collision detection r Before attempting a retransmission, adapter waits a random time, that is, random access

5: DataLink Layer5-22 Ethernet CSMA/CD algorithm 1. Adaptor receives datagram from net layer & creates frame 2. If adapter senses channel idle, it starts to transmit frame. If it senses channel busy, waits until channel idle and then transmits 3. If adapter transmits entire frame without detecting another transmission, the adapter is done with frame ! 4. If adapter detects another transmission while transmitting, aborts and sends jam signal (48-bit, Why?) 5. After aborting, adapter enters exponential backoff: after the m-th collision, adapter chooses a K at random from {0,1,2,…,2 m -1}. Adapter waits K·512 bit times and returns to Step 2

5: DataLink Layer5-23 Ethernet’s CSMA/CD (more) Jam Signal: make sure all other transmitters are aware of collision; 48 bits Bit time:.1 microsec for 10 Mbps Ethernet ; for K=1023, wait time is about 50 msec Exponential Backoff: r Goal: adapt retransmission attempts to estimated current load m heavy load: random wait will be longer r first collision: choose K from {0,1}; delay is K· 512 bit transmission times r after second collision: choose K from {0,1,2,3}… r after ten collisions, choose K from {0,1,2,3,4,…,1023} Why exponential? Why random number picking?

5: DataLink Layer5-24 CSMA/CD efficiency r T prop = max prop between 2 nodes in LAN r t trans = time to transmit max-size frame r Efficiency goes to 1 as t prop goes to 0 r Goes to 1 as t trans goes to infinity r Much better than ALOHA, but still decentralized, simple, and cheap Why?

5: DataLink Layer Ethernet Standards: Link & Physical Layers r many different Ethernet standards m common MAC protocol and frame format m different speeds: 2 Mbps, 10 Mbps, 100 Mbps, 1Gbps, 10G bps m different physical layer media: fiber, cable application transport network link physical MAC protocol and frame format 100BASE-TX 100BASE-T4 100BASE-FX 100BASE-T2 100BASE-SX 100BASE-BX fiber physical layer copper (twister pair) physical layer

5: DataLink Layer5-26 Manchester encoding r Used in 10BaseT r Each bit has a transition r Allows clocks in sending and receiving nodes to synchronize to each other m no need for a centralized, global clock among nodes! r Hey, this is physical-layer stuff!

Link Layer5-27 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing, ARP  Ethernet  switches  VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request

5: DataLink Layer BaseT and 100BaseT r 10/100 Mbps rate; latter called “fast ethernet” r T stands for Twisted Pair r Nodes connect to a hub: “star topology”; 100 m max distance between nodes and hub twisted pair hub

5: DataLink Layer5-29 Hubs Hubs are essentially physical-layer repeaters: m bits coming from one link go out all other links m at the same rate m no frame buffering m no CSMA/CD at hub: adapters detect collisions m provides net management functionality twisted pair hub

5: DataLink Layer5-30 Switch r link-layer device: smarter than hubs, take active role m store, forward Ethernet frames m examine incoming frame’s MAC address, selectively forward frame to one-or-more outgoing links when frame is to be forwarded on segment, uses CSMA/CD to access segment r transparent m hosts are unaware of presence of switches r plug-and-play, self-learning m switches do not need to be configured

5: DataLink Layer5-31 Switch: allows multiple simultaneous transmissions r hosts have dedicated, direct connection to switch r switches buffer packets r Ethernet protocol used on each incoming link, but no collisions; full duplex m each link is its own collision domain r switching: A-to-A’ and B- to-B’ simultaneously, without collisions m not possible with dumb hub A A’ B B’ C C’ switch with six interfaces (1,2,3,4,5,6)

5: DataLink Layer5-32 Switch Table r Q: how does switch know that A’ reachable via interface 4, B’ reachable via interface 5? r A: each switch has a switch table, each entry: m (MAC address of host, interface to reach host, time stamp) r looks like a routing table! r Q: how are entries created, maintained in switch table? m something like a routing protocol? A A’ B B’ C C’ switch with six interfaces (1,2,3,4,5,6)

5: DataLink Layer5-33 Switch: self-learning r switch learns which hosts can be reached through which interfaces m when frame received, switch “learns” location of sender: incoming LAN segment m records sender/location pair in switch table A A’ B B’ C C’ A A’ Source: A Dest: A’ MAC addr interface TTL Switch table (initially empty) A 1 60

5: DataLink Layer5-34 Filtering/Forwarding When switch receives a frame: index switch table using MAC dest address if entry found for destination then{ if dest on segment from which frame arrived then drop the frame else forward the frame on interface indicated } else flood forward on all but the interface on which the frame arrived

Link Layer5-35 Interconnecting switches  switches can be connected together Q: sending from A to G - how does S 1 know to forward frame destined to F via S 4 and S 3 ?  A: self learning! (works exactly the same as in single-switch case!) A B S1S1 C D E F S2S2 S4S4 S3S3 H I G

Link Layer5-36 Institutional network to external network router IP subnet mail server web server

5: DataLink Layer5-37 Switches vs. Routers r both store-and-forward devices m routers: network layer devices (examine network layer headers) m switches are link layer devices r routers maintain routing tables, implement routing algorithms r switches maintain switch tables, implement filtering, learning algorithms

5: DataLink Layer5-38 Summary comparison

Link Layer5-39 VLANs: motivation (virtual LAN) consider: r CS user moves office to EE, but wants connect to CS switch? r single broadcast domain: m all layer-2 broadcast traffic (ARP, DHCP, unknown location of destination MAC address) must cross entire LAN m security/privacy, efficiency issues Computer Science Electrical Engineering Computer Engineering

Link Layer5-40 VLANs port-based VLAN: switch ports grouped (by switch management software) so that single physical switch …… switch(es) supporting VLAN capabilities can be configured to define multiple virtual LANS over single physical LAN infrastructure. Virtual Local Area Network … Electrical Engineering (VLAN ports 1-8) Computer Science (VLAN ports 9-15) 15 … Electrical Engineering (VLAN ports 1-8) … … Computer Science (VLAN ports 9-16) … operates as multiple virtual switches

Link Layer5-41 Port-based VLAN … Electrical Engineering (VLAN ports 1-8) Computer Science (VLAN ports 9-15) 15 …  traffic isolation: frames to/from ports 1-8 can only reach ports 1-8  can also define VLAN based on MAC addresses of endpoints, rather than switch port  dynamic membership: ports can be dynamically assigned among VLANs router  forwarding between VLANS: done via routing (just as with separate switches)  in practice vendors sell combined switches plus routers

Link Layer5-42 VLANS spanning multiple switches r trunk port: carries frames between VLANS defined over multiple physical switches m frames forwarded within VLAN between switches can’t be vanilla frames (must carry VLAN ID info) m 802.1q protocol adds/removed additional header fields for frames forwarded between trunk ports … Electrical Engineering (VLAN ports 1-8) Computer Science (VLAN ports 9-15) 15 … Ports 2,3,5 belong to EE VLAN Ports 4,6,7,8 belong to CS VLAN

Link Layer5-43 type 2-byte Tag Protocol Identifier (value: 81-00) Tag Control Information (12 bit VLAN ID field, 3 bit priority field like IP TOS) Recomputed CRC 802.1Q VLAN frame format frame 802.1Q frame dest. address source address data (payload) CRC preamble dest. address source address preamble data (payload) CRC type

Link Layer5-44 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing, ARP  Ethernet  switches  VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request

Link Layer5-45 Multiprotocol label switching (MPLS) r initial goal: high-speed IP forwarding using fixed length label (instead of IP address) m fast lookup using fixed length identifier (rather than shortest prefix matching) m borrowing ideas from Virtual Circuit (VC) approach m but IP datagram still keeps IP address! PPP or Ethernet header IP header remainder of link-layer frame MPLS header label Exp S TTL

Link Layer5-46 MPLS capable routers r a.k.a. label-switched router r forward packets to outgoing interface based only on label value (don’t inspect IP address) m MPLS forwarding table distinct from IP forwarding tables r flexibility: MPLS forwarding decisions can differ from those of IP m use destination and source addresses to route flows to same destination differently (traffic engineering) m re-route flows quickly if link fails: pre-computed backup paths (useful for VoIP)

Link Layer5-47 R2 D R3 R5 A R6 MPLS versus IP paths IP router  IP routing: path to destination determined by destination address alone R4

Link Layer5-48 R2 D R3 R4 R5 A R6 MPLS versus IP paths IP-only router  IP routing: path to destination determined by destination address alone MPLS and IP router  MPLS routing: path to destination can be based on source and dest. address  fast reroute: precompute backup routes in case of link failure entry router (R4) can use different MPLS routes to A based, e.g., on source address

Link Layer5-49 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing, ARP  Ethernet  switches  VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request

Link Layer5-50 Data center networks r 10’s to 100’s of thousands of hosts, often closely coupled, in close proximity: m e-business (e.g. Amazon) m content-servers (e.g., YouTube, Akamai, Apple, Microsoft) m search engines, data mining (e.g., Google)  challenges:  multiple applications, each serving massive numbers of clients  managing/balancing load, avoiding processing, networking, data bottlenecks Inside a 40-ft Microsoft container, Chicago data center

Link Layer5-51 Server racks TOR switches Tier-1 switches Tier-2 switches Load balancer Load balancer B A C Border router Access router Internet Data center networks load balancer: application-layer routing  receives external client requests  directs workload within data center  returns results to external client (hiding data center internals from client)

Server racks TOR switches Tier-1 switches Tier-2 switches Data center networks  rich interconnection among switches, racks:  increased throughput between racks (multiple routing paths possible)  increased reliability via redundancy

Link Layer5-53 Link layer, LANs: outline 5.1 introduction, services 5.2 error detection, correction 5.3 multiple access protocols 5.4 LANs  addressing, ARP  Ethernet  switches  VLANS 5.5 link virtualization: MPLS 5.6 data center networking 5.7 a day in the life of a web request

Link Layer5-54 Synthesis: a day in the life of a web request r journey down protocol stack complete! m application, transport, network, link r putting-it-all-together: synthesis! m goal: identify, review, understand protocols (at all layers) involved in seemingly simple scenario: requesting www page m scenario: student attaches laptop to campus network, requests/receives

Link Layer 5-55 A day in the life: scenario Comcast network /13 Google’s network / web server DNS server school network /24 web page browser

router (runs DHCP) Link Layer5-56 A day in the life… connecting to the Internet  connecting laptop needs to get its own IP address, addr of first-hop router, addr of DNS server: use DHCP DHCP UDP IP Eth Phy DHCP UDP IP Eth Phy DHCP  DHCP request encapsulated in UDP, encapsulated in IP, encapsulated in Ethernet  Ethernet frame broadcast (dest: FFFFFFFFFFFF) on LAN, received at router running DHCP server  Ethernet demuxed to IP demuxed, UDP demuxed to DHCP

router (runs DHCP) Link Layer5-57 r DHCP server formulates DHCP ACK containing client’s IP address, IP address of first-hop router for client, name & IP address of DNS server DHCP UDP IP Eth Phy DHCP UDP IP Eth Phy DHCP  encapsulation at DHCP server, frame forwarded (switch learning) through LAN, demultiplexing at client Client now has IP address, knows name & addr of DNS server, IP address of its first-hop router  DHCP client receives DHCP ACK reply A day in the life… connecting to the Internet

router (runs DHCP) Link Layer5-58 A day in the life… ARP (before DNS, before HTTP)  before sending HTTP request, need IP address of DNS DNS UDP IP Eth Phy DNS  DNS query created, encapsulated in UDP, encapsulated in IP, encapsulated in Eth. To send frame to router, need MAC address of router interface: ARP  ARP query broadcast, received by router, which replies with ARP reply giving MAC address of router interface  client now knows MAC address of first hop router, so can now send frame containing DNS query ARP query Eth Phy ARP ARP reply

router (runs DHCP) Link Layer5-59 DNS UDP IP Eth Phy DNS  IP datagram containing DNS query forwarded via LAN switch from client to 1 st hop router  IP datagram forwarded from campus network into comcast network, routed (tables created by RIP, OSPF, IS-IS and/or BGP routing protocols) to DNS server  demux’ed to DNS server  DNS server replies to client with IP address of Comcast network /13 DNS server DNS UDP IP Eth Phy DNS A day in the life… using DNS

router (runs DHCP) Link Layer5-60 A day in the life…TCP connection carrying HTTP HTTP TCP IP Eth Phy HTTP  to send HTTP request, client first opens TCP socket to web server  TCP SYN segment (step 1 in 3- way handshake) inter-domain routed to web server  TCP connection established! web server SYN TCP IP Eth Phy SYN SYNACK  web server responds with TCP SYNACK (step 2 in 3-way handshake)

router (runs DHCP) Link Layer5-61 A day in the life… HTTP request/reply HTTP TCP IP Eth Phy HTTP  HTTP request sent into TCP socket  IP datagram containing HTTP request routed to  IP datagram containing HTTP reply routed back to client web server HTTP TCP IP Eth Phy  web server responds with HTTP reply (containing web page) HTTP  web page finally (!!!) displayed

Link Layer5-62 Chapter 5: Summary r principles behind data link layer services: m error detection, correction m sharing a broadcast channel: multiple access m link layer addressing r instantiation and implementation of various link layer technologies m Ethernet m switched LANS, VLANs m virtualized networks as a link layer: MPLS r synthesis: a day in the life of a web request

Link Layer5-63 Chapter 5: let’s take a breath r journey down protocol stack complete (except PHY) r solid understanding of networking principles, practice r ….. could stop here …. but lots of interesting topics! m wireless m multimedia m security m network management