Parsing V LR(1) Parsers C OMP 412 Rice University Houston, Texas Fall 2001 Copyright 2000, Keith D. Cooper, Ken Kennedy, & Linda Torczon, all rights reserved.

Slides:



Advertisements
Similar presentations
Parsing V: Bottom-up Parsing
Advertisements

Parsing Wrap Up Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit.
6/12/2015Prof. Hilfinger CS164 Lecture 111 Bottom-Up Parsing Lecture (From slides by G. Necula & R. Bodik)
1 CMPSC 160 Translation of Programming Languages Fall 2002 slides derived from Tevfik Bultan, Keith Cooper, and Linda Torczon Lecture-Module #10 Parsing.
Parsing VI The LR(1) Table Construction. LR(k) items The LR(1) table construction algorithm uses LR(1) items to represent valid configurations of an LR(1)
Parsing III (Eliminating left recursion, recursive descent parsing)
Parsing VII The Last Parsing Lecture Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at.
Parsing V Introduction to LR(1) Parsers. from Cooper & Torczon2 LR(1) Parsers LR(1) parsers are table-driven, shift-reduce parsers that use a limited.
Parsing — Part II (Ambiguity, Top-down parsing, Left-recursion Removal)
Prof. Fateman CS 164 Lecture 91 Bottom-Up Parsing Lecture 9.
Table-driven parsing Parsing performed by a finite state machine. Parsing algorithm is language-independent. FSM driven by table (s) generated automatically.
1 CIS 461 Compiler Design & Construction Fall 2012 slides derived from Tevfik Bultan, Keith Cooper, and Linda Torczon Lecture-Module #12 Parsing 4.
Parsing Wrap-up. from Cooper and Torczon2 Filling in the A CTION and G OTO Tables The algorithm Many items generate no table entry  Closure( ) instantiates.
Bottom-up parsing Goal of parser : build a derivation
Lexical and syntax analysis
Parsing IV Bottom-up Parsing Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Parsing IV Bottom-up Parsing. Parsing Techniques Top-down parsers (LL(1), recursive descent) Start at the root of the parse tree and grow toward leaves.
LR(1) Parsers Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit.
Parsing. Goals of Parsing Check the input for syntactic accuracy Return appropriate error messages Recover if possible Produce, or at least traverse,
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Lexical Analysis - An Introduction Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at.
Lexical Analysis - An Introduction Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at.
Introduction to Parsing Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Introduction to Parsing Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Introduction to Parsing Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Parsing III (Top-down parsing: recursive descent & LL(1) )
Profs. Necula CS 164 Lecture Top-Down Parsing ICOM 4036 Lecture 5.
Review 1.Lexical Analysis 2.Syntax Analysis 3.Semantic Analysis 4.Code Generation 5.Code Optimization.
Top Down Parsing - Part I Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Parsing III (Top-down parsing: recursive descent & LL(1) ) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students.
Bottom-up Parsing, Part I Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University.
Parsing — Part II (Top-down parsing, left-recursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students.
Top-down Parsing lecture slides from C OMP 412 Rice University Houston, Texas, Fall 2001.
Parsing — Part II (Top-down parsing, left-recursion removal) Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved. Students.
1 Syntax Analysis Part II Chapter 4 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2005.
Top-down Parsing Recursive Descent & LL(1) Comp 412 Copyright 2010, Keith D. Cooper & Linda Torczon, all rights reserved. Students enrolled in Comp 412.
Top-Down Parsing CS 671 January 29, CS 671 – Spring Where Are We? Source code: if (b==0) a = “Hi”; Token Stream: if (b == 0) a = “Hi”; Abstract.
Top-down Parsing. 2 Parsing Techniques Top-down parsers (LL(1), recursive descent) Start at the root of the parse tree and grow toward leaves Pick a production.
Top-Down Parsing.
CS 330 Programming Languages 09 / 25 / 2007 Instructor: Michael Eckmann.
Parsing VII The Last Parsing Lecture. High-level overview  Build the canonical collection of sets of LR(1) Items, I aBegin in an appropriate state, s.
Parsing V LR(1) Parsers N.B.: This lecture uses a left-recursive version of the SheepNoise grammar. The book uses a right-recursive version. The derivations.
Parsing III (Top-down parsing: recursive descent & LL(1) )
Bottom Up Parsing CS 671 January 31, CS 671 – Spring Where Are We? Finished Top-Down Parsing Starting Bottom-Up Parsing Lexical Analysis.
Parsing V LR(1) Parsers. LR(1) Parsers LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for handle recognition.
1 Syntax Analysis Part II Chapter 4 COP5621 Compiler Construction Copyright Robert van Engelen, Florida State University, 2007.
Lecture 5: LR Parsing CS 540 George Mason University.
Compilers: Bottom-up/6 1 Compiler Structures Objective – –describe bottom-up (LR) parsing using shift- reduce and parse tables – –explain how LR.
Parsing — Part II (Top-down parsing, left-recursion removal)
Parsing III (Top-down parsing: recursive descent & LL(1) )
Lexical and Syntax Analysis
LR(1) Parsers Comp 412 COMP 412 FALL 2010
Parsing IV Bottom-up Parsing
Table-driven parsing Parsing performed by a finite state machine.
Parsing VI The LR(1) Table Construction
Syntax Analysis Part II
N.B.: This lecture uses a left-recursive version of the SheepNoise grammar. The book uses a right-recursive version. The derivations (& the tables) are.
Lexical and Syntax Analysis
Top-Down Parsing CS 671 January 29, 2008.
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Parsing VII The Last Parsing Lecture
Lecture 8 Bottom Up Parsing
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Parsing IV Bottom-up Parsing
Introduction to Parsing
Lexical Analysis — Part II: Constructing a Scanner from Regular Expressions Copyright 2003, Keith D. Cooper, Ken Kennedy & Linda Torczon, all rights reserved.
Introduction to Parsing
Parsing — Part II (Top-down parsing, left-recursion removal)
Lecture 11 LR Parse Table Construction
Lecture 11 LR Parse Table Construction
Presentation transcript:

Parsing V LR(1) Parsers C OMP 412 Rice University Houston, Texas Fall 2001 Copyright 2000, Keith D. Cooper, Ken Kennedy, & Linda Torczon, all rights reserved. Students enrolled in Comp 412 at Rice University have explicit permission to make copies of these materials for their personal use.

COMP 412, FALL LR(1) Parsers LR(1) parsers are table-driven, shift-reduce parsers that use a limited right context (1 token) for handle recognition LR(1) parsers recognize languages that have an LR(1 ) grammar Informal definition: A grammar is LR(1) if, given a rightmost derivation S   0   1   2  …   n–1   n  sentence We can 1. isolate the handle of each right-sentential form  i, and 2. determine the production by which to reduce, by scanning  i from left-to-right, going at most 1 symbol beyond the right end of the handle of  i

COMP 412, FALL LR(1) Parsers A table-driven LR(1) parser looks like Tables can be built by hand It is a perfect task to automate Scanner Table-driven Parser A CTION & G OTO Tables Parser Generator source code grammar IR

COMP 412, FALL LR(1) Skeleton Parser stack.push(INVALID); stack.push(s 0 ); not_found = true; token = scanner.next_token(); do while (not_found) { s = stack.top(); if ( ACTION[s,token] == “reduce A  ” ) then { stack.popnum(2*|  |); // pop 2*|  | symbols s = stack.top(); stack.push(A); stack.push(GOTO[s,A]); } else if ( ACTION[s,token] == “shift s i ” ) then { stack.push(token); stack.push(s i ); token  scanner.next_token(); } else if ( ACTION[s,token] == “accept” & token == EOF ) then not_found = false; else report a syntax error and recover; } report success; The skeleton parser uses A CTION & G OTO tables does |words| shifts does |derivation| reductions does 1 accept detects errors by failure of 3 other cases

COMP 412, FALL To make a parser for L(G), need a set of tables The grammar The tables LR(1) Parsers (parse tables)

COMP 412, FALL Example Parse 1 The string “baa”

COMP 412, FALL Example Parse 1 The string “baa”

COMP 412, FALL Example Parse 2 The string “baa baa ”

COMP 412, FALL Example Parse 2 The string “baa baa ”

COMP 412, FALL Example Parse 2 The string “baa baa ”

COMP 412, FALL Example Parse 2 The string “baa baa ”

COMP 412, FALL LR(1) Parsers How does this LR(1) stuff work? Unambiguous grammar  unique rightmost derivation Keep upper fringe on a stack  All active handles include top of stack (TOS)  Shift inputs until TOS is right end of a handle Language of handles is regular (finite)  Build a handle-recognizing DFA  A CTION & G OTO tables encode the DFA To match subterm, invoke subterm DFA & leave old DFA ’s state on stack Final state in DFA  a reduce action  New state is G OTO[state at TOS (after pop), lhs]  For SN, this takes the DFA to s 1 S0S0 S3S3 S2S2 S1S1 baa SN Control DFA for SN Reduce action

COMP 412, FALL Building LR(1) Parsers How do we generate the A CTION and G OTO tables? Use the grammar to build a model of the DFA Use the model to build A CTION & G OTO tables If construction succeeds, the grammar is LR(1) The Big Picture Model the state of the parser Use two functions goto( s, X ) and closure( s )  goto() is analogous to move() in the subset construction  closure() adds information to round out a state Build up the states and transition functions of the DFA Use this information to fill in the A CTION and G OTO tables Terminal or non-terminal

COMP 412, FALL LR(k) items An LR(k) item is a pair [ P,  ], where P is a production A  with a at some position in the rhs  is a lookahead string of length ≤ k (words or EOF ) The in an item indicates the position of the top of the stack [A  ,a] means that the input seen so far is consistent with the use of A  immediately after the symbol on top of the stack [A  ,a] means that the input sees so far is consistent with the use of A  at this point in the parse, and that the parser has already recognized . [A ,a] means that the parser has seen , and that a lookahead symbol of a is consistent with reducing to A. The table construction algorithm uses items to represent valid configurations of an LR(1) parser

COMP 412, FALL LR(1) Items The production A  , where  = B 1 B 1 B 1 with lookahead a, can give rise to 4 items [A B 1 B 1 B 1,a], [A  B 1B 1 B 1,a], [A  B 1 B 1B 1,a], & [A  B 1 B 1 B 1,a] The set of LR(1) items for a grammar is finite What’s the point of all these lookahead symbols? Carry them along to choose correct reduction (if a choice occurs) Lookaheads are bookkeeping, unless item has at right end  Has no direct use in [A   ,a]  In [A  ,a], a lookahead of a implies a reduction by A    For { [A  ,a],[B   ,b] }, a  reduce to A; F IRST (  )  shift  Limited right context is enough to pick the actions

COMP 412, FALL High-level overview  Build the canonical collection of sets of LR(1) Items, I a Begin in an appropriate state, s 0  [S’  S, EOF ], along with any equivalent items  Derive equivalent items as closure( i 0 ) b Repeatedly compute, for each s k, and each X, goto(s k,X)  If the set is not already in the collection, add it  Record all the transitions created by goto( ) This eventually reaches a fixed point 2 Fill in the table from the collection of sets of LR(1) items The canonical collection completely encodes the transition diagram for the handle-finding DFA LR(1) Table Construction

COMP 412, FALL Back to Finding Handles Revisiting an issue from last class Parser in a state where the stack (the fringe) was Expr – Term With lookahead of * How did it choose to expand Term rather than reduce to Expr? Lookahead symbol is the key With lookahead of + or –, parser should reduce to Expr With lookahead of * or /, parser should shift Parser uses lookahead to decide All this context from the grammar is encoded in the handle recognizing mechanism

COMP 412, FALL Back to x – 2 * y 1. Shift until TOS is the right end of a handle 2. Find the left end of the handle & reduce Remember this slide from last lecture? shift here reduce here

COMP 412, FALL Computing F IRST Sets Define F IRST as If   * a , a  T,   (T  NT)*, then a  F IRST (  ) If   * , then   F IRST (  ) Note: if  = X , F IRST (  ) = F IRST ( X) To compute F IRST Use a fixed-point method F IRST (A)  2 (T   ) Loop is monotonic  Algorithm halts For SheepNoise: F IRST (Goal) = { baa } F IRST (SN) = { baa } F IRST (baa) = { baa } for each x  T, F IRST (x)  { x } for each A  NT, F IRST (A)  Ø while (F IRST sets are still changing) for each p  P, of the form A  , if  is  then F IRST (A)  F IRST (A)  {  } else if  is B 1 B 2 …B k then begin F IRST (A)  F IRST (A)  ( F IRST (B 1 ) – {  } ) for i  1 to k–1 by 1 while   F IRST (B i ) F IRST (A)  F IRST (A)  ( F IRST (B i +1 ) – {  } ) if i = k–1 and   FIRST(B k ) then F IRST (A)  F IRST (A)  {  } end

COMP 412, FALL Computing Closures Closure(s) adds all the items implied by items already in s Any item [A   B ,a] implies [B  ,x] for each production with B on the lhs, and each x  F IRST (  a) Since  B  is valid, any way to derive  B  is valid, too The algorithm Closure( s ) while ( s is still changing )  items [ A   B ,a]  s  productions B    P  b  F IRST (  a) //  might be  if [ B  ,b]  s then add [ B  ,b] to s Classic fixed-point algorithm Halts because s  I TEMS Worklist version is faster Closure “fills out” a state

COMP 412, FALL Example From SheepNoise Initial step builds the item [Goal  SheepNoise, EOF ] and takes its closure( ) Closure( [Goal  SheepNoise, EOF ] ) So, S 0 is { [Goal  SheepNoise,EOF], [SheepNoise  SheepNoise baa,EOF], [SheepNoise  baa,EOF], [SheepNoise  SheepNoise baa,baa], [SheepNoise  baa,baa] }

COMP 412, FALL Computing Gotos Goto(s,x) computes the state that the parser would reach if it recognized an x while in state s Goto( { [A   X ,a] }, X ) produces [A   X ,a] (obviously) It also includes closure( [A   X ,a] ) to fill out the state The algorithm Goto( s, X ) new  Ø  items [ A  X ,a]  s new  new  [ A  X ,a] return closure(new) Not a fixed point method! Straightforward computation Uses closure( ) Goto() advances the parse

COMP 412, FALL Example from SheepNoise S 0 is { [Goal  SheepNoise,EOF], [SheepNoise  SheepNoise baa,EOF], [SheepNoise  baa,EOF], [SheepNoise  SheepNoise baa,baa], [SheepNoise  baa,baa] } Goto( S 0, baa ) Loop produces Closure adds nothing since is at end of rhs in each item In the construction, this produces s 2 { [SheepNoise  baa, { EOF,baa}]} New, but obvious, notation for two distinct items [SheepNoise  baa, EOF ] & [SheepNoise  baa, baa]

COMP 412, FALL Example from SheepNoise S 0 : { [Goal  SheepNoise, EOF], [SheepNoise  SheepNoise baa, EOF], [SheepNoise  baa, EOF], [SheepNoise  SheepNoise baa, baa], [SheepNoise  baa, baa] } S 1 = Goto(S 0, SheepNoise ) = { [Goal  SheepNoise, EOF], [SheepNoise  SheepNoise baa, EOF], [SheepNoise  SheepNoise baa, baa] } S 2 = Goto(S 0, baa ) = { [SheepNoise  baa, EOF], [SheepNoise  baa, baa] } S 3 = Goto(S 1, baa ) = { [SheepNoise  SheepNoise baa, EOF], [SheepNoise  SheepNoise baa, baa] }

COMP 412, FALL Building the Canonical Collection Start from s 0 = closure( [S’  S,EOF] ) Repeatedly construct new states, until all are found The algorithm s 0  closure( [ S’  S, EOF ] ) S  { s 0 } k  1 while ( S is still changing )  s j  S and  x  ( T  NT ) s k  goto(s j,x) record s j  s k on x if s k  S then S  S  s k k  k + 1 Fixed-point computation Loop adds to S S  2 ITEMS, so S is finite Worklist version is faster

COMP 412, FALL Example (grammar & sets) Simplified, right recursive expression grammar Goal  Expr Expr  Term – Expr Expr  Term Term  Factor * Term Term  Factor Factor  ident

COMP 412, FALL Example (building the collection) Initialization Step s 0  closure( { [ Goal  Expr, EOF ] } ) { [ Goal  Expr, EOF], [ Expr  Term – Expr, EOF], [ Expr  Term, EOF], [ Term  Factor * Term, EOF], [ Term  Factor * Term, –], [ Term  Factor, EOF], [ Term  Factor, –], [ Factor  ident, EOF], [ Factor  ident, –], [ Factor  ident, *] } S  {s 0 }

COMP 412, FALL Example (building the collection) Iteration 1 s 1  goto(s 0, Expr) s 2  goto(s 0, Term) s 3  goto(s 0, Factor) s 4  goto(s 0, ident ) Iteration 2 s 5  goto(s 2, – ) s 6  goto(s 3, * ) Iteration 3 s 7  goto(s 5, Expr ) s 8  goto(s 6, Term )

COMP 412, FALL Example (Summary) S 0 : { [ Goal  Expr, EOF], [ Expr  Term – Expr, EOF], [ Expr  Term, EOF], [ Term  Factor * Term, EOF], [ Term  Factor * Term, –], [ Term  Factor, EOF], [ Term  Factor, –], [ Factor  ident, EOF], [ Factor  ident, –], [ Factor  ident, *] } S 1 : { [ Goal  Expr, EOF] } S 2 : { [ Expr  Term – Expr, EOF], [ Expr  Term, EOF] } S 3 : { [ Term  Factor * Term, EOF],[ Term  Factor * Term, –], [ Term  Factor, EOF], [ Term  Factor, –] } S 4 : { [ Factor  ident, EOF],[ Factor  ident, –], [ Factor  ident, *] } S 5 : { [ Expr  Term – Expr, EOF ], [ Expr  Term – Expr, EOF ], [ Expr  Term, EOF ], [ Term  Factor * Term, –], [ Term  Factor, –], [ Term  Factor * Term, EOF ], [ Term  Factor, EOF ], [ Factor  ident, *], [ Factor  ident, –], [ Factor  ident, EOF ] }

COMP 412, FALL Example (Summary) S 6 : { [ Term  Factor * Term, EOF ], [ Term  Factor * Term, –], [ Term  Factor * Term, EOF ], [ Term  Factor * Term, –], [ Term  Factor, EOF ], [ Term  Factor, –], [ Factor  ident, EOF ], [ Factor  ident, –], [ Factor  ident, *] } S 7 : { [ Expr  Term – Expr, EOF ] } S 8 : { [ Term  Factor * Term, EOF ], [ Term  Factor * Term, –] }

COMP 412, FALL Example (Summary) The Goto Relationship (from the construction)

COMP 412, FALL Filling in the A CTION and G OTO Tables The algorithm Many items generate no table entry  Closure( ) instantiates F IRST (X) directly for [A X ,a ]  set s x  S  item i  s x if i is [A   a ,b] and goto(s x,a) = s k, a  T then A CTION [x,a]  “shift k” else if i is [S’  S, EOF ] then A CTION [x,a]  “accept” else if i is [A  ,a] then A CTION [x,a]  “reduce A   ”  n  NT if goto(s x,n) = s k then G OTO [x,n]  k x is the state number

COMP 412, FALL Example (Filling in the tables) The algorithm produces the following table

COMP 412, FALL What can go wrong? What if set s contains [A a ,b] and [B ,a] ? First item generates “shift”, second generates “reduce” Both define ACTION[s,a] — cannot do both actions This is a fundamental ambiguity, called a shift/reduce error Modify the grammar to eliminate it (if-then-else) Shifting will often resolve it correctly What is set s contains [A , a] and [B , a] ? Each generates “reduce”, but with a different production Both define ACTION[s,a] — cannot do both reductions This is a fundamental ambiguity, called a reduce/reduce conflict Modify the grammar to eliminate it (P L/I’ s overloading of (...)) In either case, the grammar is not LR(1)

COMP 412, FALL Shrinking the Tables Three options: Combine terminals such as number & identifier, + & -, * & /  Directly removes a column, may remove a row  For expression grammar, 198 (vs. 384) table entries Combine rows or columns  Implement identical rows once & remap states  Requires extra indirection on each lookup  Use separate mapping for A CTION & for G OTO Use another construction algorithm  Both L ALR(1) and S LR(1) produce smaller tables  Implementations are readily available

COMP 412, FALL LR(k) versus LL(k) (Top-down Recursive Descent ) Finding Reductions LR(k)  Each reduction in the parse is detectable with  the complete left context,  the reducible phrase, itself, and  the k terminal symbols to its right  LL(k)  Parser must select the reduction based on  The complete left context  The next k terminals  Thus, LR(k) examines more context  “… in practice, programming languages do not actually seem to fall in the gap between LL(1) languages and deterministic languages” J.J. Horning, “LR Grammars and Analysers”, in Compiler Construction, An Advanced Course, Springer-Verlag, 1976

COMP 412, FALL Summary Advantages Fast Good locality Simplicity Good error detection Fast Deterministic langs. Automatable Left associativity Disadvantages Hand-coded High maintenance Right associativity Large working sets Poor error messages Large table sizes Top-down recursive descent LR(1)