Remote Sensing Division Naval Research Lab, Washington, DC 20375 Separating Whitecap Fraction of Active Wave Breaking From Satellite Estimates of Total.

Slides:



Advertisements
Similar presentations
Parametrization of surface fluxes: Outline
Advertisements

Whitecaps, sea-salt aerosols, and climate Magdalena D. Anguelova Physical Oceanography Dissertation Symposium College of Marine Studies, University of.
Global trends in air-sea CO 2 fluxes based on in situ and satellite products Rik Wanninkhof, NOAA/AOML ACE Ocean Productivity and Carbon Cycle (OPCC) Workshop.
A thermodynamic model for estimating sea and lake ice thickness with optical satellite data Student presentation for GGS656 Sanmei Li April 17, 2012.
Hurricanes and Atlantic Surface Flux Variability Mark A. Bourassa 1,2, Paul J. Hughes 1,2, Jeremy Rolph 1, and.
Modeling of Wind-Wave- Current Coupled Processes in Hurricanes Isaac Ginis Yalin Fan Tetsu Hara Biju Thomas Graduate School of Oceanography University.
NOAA COARE Gas Transfer parameterization: Update Using Wave Parameters C. W. Fairall* NOAA Earth Science Research Laboratory, Boulder, CO, USA Ludovic.
Air-sea heat fluxes in the stratocumulus deck / cold tongue / ITCZ complex of the eastern tropical Pacific Meghan F. Cronin (NOAA PMEL) Chris Fairall (NOAA.
Complex dielectric constant of sea foam for microwave remote sensing Magdalena D. Anguelova Peter W. Gaiser Naval Research Laboratory, Washington, DC 15th.
Evaluation of the Simulated Ocean Response to Hurricane Ivan in Comparison to High-Quality Ocean Observations George Halliwell, Nick Shay Rosenstiel School.
Thermo & Stat Mech - Spring 2006 Class 14 1 Thermodynamics and Statistical Mechanics Kinetic Theory of Gases.
1 Progress Towards Developing a Coupled Atmosphere-Wave-Ocean Framework for Research and Operational Hurricane Models Isaac Ginis B. Thomas, R. Yablonsky,
Thermohaline Circulation
Recent evaluations of CO2 and O2 air-sea mean excange in the key ocean areas Roman Bortkovski, Boris Egorov and Natalia Tolstobrova Main Geophysical Observatory.
Lesson 2 AOSC 621. Radiative equilibrium Where S is the solar constant. The earth reflects some of this radiation. Let the albedo be ρ, then the energy.
Forecasting Ocean Waves Problem: Given observed or expected weather, what will be the sea state? Ships are sunk not by winds, but by waves!
Air-Sea Interaction in Hurricanes Kerry Emanuel Massachusetts Institute of Technology.
Wind Driven Circulation I: Planetary boundary Layer near the sea surface.
Potential temperature ( o C, Levitus 1994) Surface Global zonal mean.
Magdalena D. Anguelova, Ferris Webster, Peter Gaiser 12 May, 2004 Effects of Environmental Variables in Sea Spray Generation Function via Whitecap Coverage.
Magdalena D. Anguelova, Justin P. Bobak, William E. Asher, David J. Dowgiallo, Ben I. Moat, Robin W. Pascal, Margaret J. Yelland 16th Conference on Air-Sea.
EVALUATION OF UPPER OCEAN MIXING PARAMETERIZATIONS S. Daniel Jacob 1, Lynn K. Shay 2 and George R. Halliwell 2 1 GEST, UMBC/ NASA GSFC, Greenbelt, MD
Direct measurements of air-sea interaction John Prytherch, Margaret J. Yelland, Robin W. Pascal, Ben I. Moat With contributions from: Meric Srokosz, Christine.
Chris Birchfield Atmospheric Sciences, Spanish minor.
R. Oran csem.engin.umich.edu SHINE 09 May 2005 Campaign Event: Introducing Turbulence Rona Oran Igor V. Sokolov Richard Frazin Ward Manchester Tamas I.
WP5: Integration & Validation IFREMER, NERSC, NIERSC, ODL, NAVTOR, NERC.
Dataset Development within the Surface Processes Group David I. Berry and Elizabeth C. Kent.
Generation of Sea-Salt Aerosols Magdalena Anguelova Bridging the Gap October , 1999.
WIND STRESS OVER INDIAN OCEAN Abhijit Sarkar, K Satheesan, Anant Parekh Ocean Sciences Division Space Applications Centre, INDIA ISRO-CNES Joint Programme.
Magdalena D. Anguelova, Justin P. Bobak, William E. Asher, David J. Dowgiallo, Ben I. Moat, Robin W. Pascal, Margaret J. Yelland 16th Conference on Air-Sea.
Jian-Wen Bao Christopher W. Fairall Sara A. Michelson Laura Bianco NOAA/ESRL/Physical Sciences Division in collaboration with N. Surgi, Y. Kwon and V.
Optimization of L-band sea surface emissivity models deduced from SMOS data X. Yin (1), J. Boutin (1), N. Martin (1), P. Spurgeon (2) (1) LOCEAN, Paris,
Xin Xi Feb. 28. Basics  Convective entrainment : The buoyant thermals from the surface layer rise through the mixed layer, and penetrate (with enough.
Magdalena D. Anguelova Michael H. Bettenhausen William F. Johnston* Peter W. Gaiser Novel Applications of Remote Sensing for Improved Quantification of.
Whitecaps, sea-salt aerosols, and climate Magdalena D. Anguelova Oceans and Ice Branch Seminar College of Marine Studies University of Delaware18 October,
Danielle Niles & Steven Martinaitis Physics of the Air-Sea Boundary Layer OCP 5551 Dr. Mark Bourassa The Florida State University.
Three Lectures on Tropical Cyclones Kerry Emanuel Massachusetts Institute of Technology Spring School on Fluid Mechanics of Environmental Hazards.
Dependence of spray flux on breaking waves Fairall, C AF: NOAA / ETL, 325 Broadway, Boulder, CO United States M.Banner and Morison, R The University.
D. Vandemark 1, H. Feng 1, Y. Quilfen 2, F. Arduin 2, B. Chapron 2 1 Ocean Process Analysis Lab,University of New Hampshire, USA 2 IFREMER/Centre de Brest,
Bulk Parameterizations for Wind Stress and Heat Fluxes (Chou 1993; Chou et al. 2003) Outlines: Eddy correlation (covariance) method Eddy correlation (covariance)
An evaluation of satellite derived air-sea fluxes through use in ocean general circulation model Vijay K Agarwal, Rashmi Sharma, Neeraj Agarwal Meteorology.
1 Marginal Thermobaric Stability in the Weddell Sea Miles McPhee McPhee Research Company.
Ocean Surface Roughness and Remote Sensing Paul Hwang Remote Sensing Division Naval Research Laboratory.
Ocean Surface heat fluxes
An evaluation of a hybrid satellite and NWP- based turbulent fluxes with TAO buoys ChuanLi Jiang, Kathryn A. Kelly, and LuAnne Thompson University of Washington.
OEAS 604: Introduction to Physical Oceanography Surface heat balance and flux Chapters 2,3 – Knauss Chapter 5 – Talley et al. 1.
Parameterizations of the Sea-Spray Effects
1 Wavelength Scaling of Ocean Surface Friction Coefficient in Wind Sea and Mixed Sea Paul A. Hwang Remote Sensing Division, Naval Research Laboratory Héctor.
Infrared and Microwave Remote Sensing of Sea Surface Temperature Gary A. Wick NOAA Environmental Technology Laboratory January 14, 2004.
Magdalena D. Anguelova Michael H. Bettenhausen Michael H. Bettenhausen William F. Johnston William F. Johnston Peter W. Gaiser Peter W. Gaiser Oceanic.
Evaluation of Satellite-Derived Air-Sea Flux Products Using Dropsonde Data Gary A. Wick 1 and Darren L. Jackson 2 1 NOAA ESRL, Physical Sciences Division.
Guðrún Nína Petersen and Ian A. Renfrew Aircraft-based observations of air-sea fluxes over Denmark Strait and the Irminger Sea during high wind speed conditions.
Dynamical Constraints on the Gravity Wave Source Spectrum Used in a Parameterization of Gravity Wave Forcing David Ortland NorthWest Research Associates.
Radiometric Measurements of Whitecaps and Surface Fluxes Magdalena D. Anguelova Remote Sensing Division Naval Research Laboratory Washington, DC, USA In.
Chelle L. Gentemann Peter J. Minnett Brian Ward Refinement of bulk model M-AERI data Observed diurnal warming Conclusions Profile of Ocean Surface Heating:
Precipitation Effects on Turbulence and Salinity Dilution in the Near Surface Ocean Christopher J. Zappa Lamont-Doherty Earth Observatory, Columbia University,
Surface Tension, Surfactants, and Sea Foam: Day 2.
Magdalena D. Anguelova Michael H. Bettenhausen Michael H. Bettenhausen William F. Johnston William F. Johnston Peter W. Gaiser Peter W. Gaiser Whitecap.
A New Climatology of Surface Energy Budget for the Detection and Modeling of Water and Energy Cycle Change across Sub-seasonal to Decadal Timescales Jingfeng.
Last page of mapping notes
Status and Outlook Evaluating CFSR Air-Sea Heat, Freshwater, and Momentum Fluxes in the context of the Global Energy and Freshwater Budgets PI: Lisan.
Jun Zhang NOAA/AOML/HRD William Drennan Univ. of Miami/ RSMAS
Coupled atmosphere-ocean simulation on hurricane forecast
WIND RETRIEVAL WITH CROSS-POLARIZED SAR RETURNS
WIND RETRIEVAL WITH CROSS-POLARIZED SAR RETURNS
Forecasting Ocean Waves
Coupled Atmosphere-Wave-Ocean Modeling Experiments in Hurricanes
Microwave Emissivity of a Vertically Inhomogeneous Sea-Foam Layer: Application to the WindSat Retrieval Algorithm Magdalena D. Anguelova, Karen St.
Assessment of the Surface Mixed Layer Using Glider and Buoy Data
Why do satellite-based estimates of whitecap fraction depend on
Presentation transcript:

Remote Sensing Division Naval Research Lab, Washington, DC Separating Whitecap Fraction of Active Wave Breaking From Satellite Estimates of Total Whitecap Fraction Magdalena D. Anguelova and Paul A. Hwang

20 Feb, 2012Separate active whitecap fraction, Anguelova& Hwang, NRL Enhanced when waves break Surface expression of breaking waves Whitecaps Suitable forcing variable! Air-sea processes and whitecaps Sea spray flux Gas flux Sensible heat flux Latent heat flux Enthalpy flux Momentum flux Dissipation rate Ambient noise Mass Heat Energy 2

20 Feb, 2012 Sea spray flux Gas flux Sensible heat flux Latent heat flux Enthalpy flux Momentum flux Dissipation rate Ambient noise Whitecap fraction Whitecap fraction W The fraction of ocean surface covered with foam Includes all stages of whitecap lifetime Active whitecap fraction W A (zoom image) Foam associated with breaking wave crests Includes only the initial stages of whitecap lifetime The foam moves along with the wave Click image to zoom out 3Separate active whitecap fraction, Anguelova& Hwang, NRL Mass Heat Energy

20 Feb, 2012 Sea spray flux Gas flux Sensible heat flux Latent heat flux Enthalpy flux Momentum flux Dissipation rate Ambient noise Separate active part from the total Photographic measurements : Obtain W or W A Unreliable separation Radiometric measurements: Obtain W W database W variability But, we do not have W A We need to do the next step: New data set W A from W 4Separate active whitecap fraction, Anguelova& Hwang, NRL W W W W WAWA WAWA WAWA WAWA WAWA WAWA Mass Heat Energy

20 Feb, 2012 Physical basis: The concept of breaking crest Breaking crest length distribution: Active whitecap coverage: Energy dissipation: W A (  ) relationship: Expression for from the wave spectrum Integrate over c and obtain: 5Separate active whitecap fraction, Anguelova& Hwang, NRL is breaking fronts velocity

20 Feb, 2012 Evaluate Determine values of T, b, c min, and c max Obtain active whitecap fraction 6Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 From measured wave spectrum Equilibrium range model Hanson and Phillips (1999) Gulf of Alaska data Parametric approach Hwang and Sletten (2008) Buoy data for T p and H s Validate with measurements Total dissipation rate 7Separate active whitecap fraction, Anguelova& Hwang, NRL 

20 Feb, 2012 Separate swell Hanson and Phillips (2001) Topographic minima method Hwang et al. (2012) Spectrum integration method 8Separate active whitecap fraction, Anguelova& Hwang, NRL Hanson and Phillips (1999) pp Swell Measured spectrum Equilibrium range of wind sea Dimensionless  Dimensionless S(  )

20 Feb, 2012 Parametric approach: Example 9Separate active whitecap fraction, Anguelova& Hwang, NRL ** Other dataset ( Hwang et al, 2011 ) Buoy mixed Buoy wind-sea

20 Feb, 2012 Choose values T, b, c min, and c max Breaking parameter Bubbles persistence, where T pw from buoy T p  = 0.2 Mueller and Veron, 2009: W A of Monahan, 1993 T pw influence limited, We would consider other factors: salinity, SST, surfactants T  (0.77 to 2.5) s Breaker speed c min =  c c pw,  c = 0.3 Gemmrich et al., 2008; fully developed sea Others suggest  c  0.8 c min  (1.8 to 5.6) m s -1 c max / c min = 10 10Separate active whitecap fraction, Anguelova& Hwang, NRL pw TT    2 gT c  b =

20 Feb, 2012 Active from total whitecap fraction Having W A (  ) from buoy data Make match-ups with W from WindSat 0.5º  0.5º around buoy position Find factor R = W A /W Buoy-satellite match-ups at different latitudes Parameterize R in terms of Wind speed or Geography (lat, lon) Use W database from satellites and R to build W A database 11Separate active whitecap fraction, Anguelova& Hwang, NRL 2006

20 Feb, 2012 Active whitecap fraction Phillips-Buoy 12Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Active whitecap fraction Phillips-Buoy 13Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Active whitecap fraction Phillips-Buoy 14Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Active whitecap fraction Phillips-Buoy 15Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Sensitivity to value choices 16Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Sensitivity to choice of c min 17Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Sensitivity to value choices 18Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Sensitivity to choice of T 19Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Sensitivity to choice of b 20Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Ratio W A /W 21Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, 2012 Summary Obtain W A from W on a global scale using satellite data Phillips concept to obtain W A from dissipation rate  Buoy data for wave spectrum Isolate swell Parametric approach to obtain  Choose values for coefficient of proportionality Calculate W A (  ) Obtain factor W A / W Future work: Validate  with independent measurements, previous and new Refine choices for T, b, c min, and c max /c min Extend W A calculations for more latitudes Parameterize W A / W 22Separate active whitecap fraction, Anguelova& Hwang, NRL

20 Feb, Separate active whitecap fraction, Anguelova& Hwang, NRL Click image to zoom in Wind direction WAWA W Photo courtesy of Prof. William M. Drennan, RSMAS, Miami

20 Feb, 2012 Breaking parameter b 24Separate active whitecap fraction, Anguelova& Hwang, NRL b =