Fig. 19-1 0.5 µm Chapter 19. Fig. 19-2 RESULTS 12 3 Extracted sap from tobacco plant with tobacco mosaic disease Passed sap through a porcelain filter.

Slides:



Advertisements
Similar presentations
Viruses: A Borrowed Life
Advertisements

Ch. 19 Viruses Objective: EK 3.C.3: Viral replication results in genetic variation, and viral infection can introduce genetic variation into the hosts.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Viruses (Ch. 18).
Chapter 19 Viruses.
Chapter 19 Viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Viruses: a kind of “borrowed life” HIV infected T-cell.
Scene from the 1918 influenza pandemic.. Scene from the 2003 SARS Scare.
Chapter 19: viruses.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
If it is not alive, We can’t kill it -- We can only wish to contain it!
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
WHAT DOES IT MEAN TO BE ALIVE?. Are the tiny viruses infecting this E. coli cell alive? 0.5 mm.
Chapter 19~Viruses.
Objective: Viruses. Fig RESULTS 12 3 Extracted sap from tobacco plant with tobacco mosaic disease Passed sap through a porcelain filter known to.
Chapter 19 Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses called bacteriophages.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings.
Chapter 19 Viruses. Microbial Model Systems Are viruses living organisms? –Maybe The origins of molecular biology lie in early studies of viruses that.
VIRUSES Chapter 19.
Viruses Gene Regulation results in differential Gene Expression, leading to cell Specialization.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Viruses. Nonliving particles Very small (1/2 to 1/100 of a bacterial cell) Do not perform respiration, grow, or develop Are able to replicate (only with.
 Chapter 18~ Microbial Models: The Genetics of Viruses and Bacteria.
Chapter 19 Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings I. Discovery Tobacco mosaic disease - stunts growth.
Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses lead “a kind of borrowed life” between.
Genetics of Viruses.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Overview: A Borrowed Life Viruses called bacteriophages can infect and set in motion a genetic takeover of bacteria, such as Escherichia coli Viruses lead.
Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings PowerPoint ® Lecture Presentations for Biology Eighth Edition Neil Campbell.
Fig µm Chapter 19. Fig (a) The 1918 flu pandemic (b) Influenza A H5N1 virus (c) Vaccinating ducks 0.5 µm.
Virus es Big Idea 3: Living systems store, retrieve, transmit, and respond to info essential to life processes.
Viruses. Nonliving particles Very small (1/2 to 1/100 of a bacterial cell) Do not perform respiration, grow, or develop Are able to replicate (only with.
CAMPBELL BIOLOGY Reece Urry Cain Wasserman Minorsky Jackson © 2014 Pearson Education, Inc. TENTH EDITION 19 Viruses.
Fig µm Chapter 19 - Viruses. Copyright © 2008 Pearson Education Inc., publishing as Pearson Benjamin Cummings Overview: A Borrowed Life Viruses.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Viral Replication EK 3C3: Viral replication results in genetic variation and viral infection can introduce genetic variation into the hosts.
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert.
Copyright © 2005 Pearson Education, Inc. publishing as Benjamin Cummings PowerPoint TextEdit Art Slides for Biology, Seventh Edition Neil Campbell and.
Chapter 19 - Viruses Ms. Whipple – Brethren Christian High School.
CAMPBELL BIOLOGY IN FOCUS © 2014 Pearson Education, Inc. Urry Cain Wasserman Minorsky Jackson Reece Lecture Presentations by Kathleen Fitzpatrick and Nicole.
Chapter Viruses In 1883, A. Mayer discovered that the sap extracted from tobacco plants infected with tobacco mosaic disease.
Chapter 19: Viruses.
Chapter 19 Viruses.
The Genetics of Viruses
Chapter 19 Viruses.
Fig Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses VIRUS Entry and uncoating DNA Capsid Transcription
Chapter 19 Viruses.
Chapter 19 Viruses.
Biotechnology Part 1 Genetics of Viruses
Overview: A Borrowed Life
Chapter 19 Viruses.
Fig Chapter 19: VIRUS Figure 19.1 Are the tiny viruses infecting this E. coli cell alive? 0.5 µm.
Gene Regulation results in differential Gene Expression, leading to cell Specialization Viruses
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Biotechnology Part 1 Genetics of Viruses
Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Chapter 19 Viruses.
Presentation transcript:

Fig µm Chapter 19

Fig RESULTS 12 3 Extracted sap from tobacco plant with tobacco mosaic disease Passed sap through a porcelain filter known to trap bacteria Rubbed filtered sap on healthy tobacco plants 4 Healthy plants became infected In 1935, Wendell Stanley confirmed this hypothesis by crystallizing the infectious particle, now known as tobacco mosaic virus (TMV)

Viruses : nucleic acid + a protein coat and, in some cases +a membranous envelope Viral genomes may consist of either –Double- or single-stranded DNA, or –Double- or single-stranded RNA Depending on its type of nucleic acid, a virus is called a DNA virus or an RNA virus Structure of Viruses

Fig RNA Capsomere of capsid DNA Glycoprotein 18  250 nm 70–90 nm (diameter) Glycoproteins 80–200 nm (diameter) 80  225 nm Membranous envelope RNA Capsid Head DNA Tail sheath Tail fiber 50 nm 20 nm (a) Tobacco mosaic virus (b) Adenoviruses (c) Influenza viruses (d) Bacteriophage T4

viral envelopes Some viruses have membranous envelopes that help them infect hosts These viral envelopes surround the capsids of influenza viruses and many other viruses found in animals Viral envelopes, which are derived from the host cell ’ s membrane, contain a combination of viral and host cell molecules

Bacteriophages Bacteriophages, also called phages, are viruses that infect bacteria They have the most complex capsids found among viruses Phages have an elongated capsid head that encloses their DNA A protein tail piece attaches the phage to the host and injects the phage DNA inside

The Lytic Cycle The lytic cycle is a phage reproductive cycle that culminates in the death of the host cell The lytic cycle produces new phages and digests the host ’ s cell wall, releasing the progeny viruses A phage that reproduces only by the lytic cycle is called a virulent phage Bacteria have defenses against phages, including restriction enzymes that recognize and cut up certain phage DNA

The lysogenic cycle The lysogenic cycle replicates the phage genome without destroying the host The viral DNA molecule is incorporated into the host cell ’ s chromosome This integrated viral DNA is known as a prophage Every time the host divides, it copies the phage DNA and passes the copies to daughter cells

Temperate phages An environmental signal can trigger the virus genome to exit the bacterial chromosome and switch to the lytic mode Phages that use both the lytic and lysogenic cycles are called temperate phages

Transcription and manufacture of capsid proteins Self-assembly of new virus particles and their exit from the cell Entry and uncoating Fig VIRUS DNA Capsid 4 Replication HOST CELL Viral DNA mRNA Capsid proteins Viral DNA

Fig Attachment 1

Fig Entry of phage DNA and degradation of host DNA Attachment 1 2

Fig Synthesis of viral genomes and proteins Entry of phage DNA and degradation of host DNA Attachment 1 2 3

Fig Phage assembly Assembly Synthesis of viral genomes and proteins Entry of phage DNA and degradation of host DNA Attachment HeadTailTail fibers 3

Fig Phage assembly HeadTailTail fibers Assembly Release Synthesis of viral genomes and proteins Entry of phage DNA and degradation of host DNA Attachment

Fig Phage DNA Phage The phage injects its DNA. Bacterial chromosome Phage DNA circularizes. Daughter cell with prophage Occasionally, a prophage exits the bacterial chromosome, initiating a lytic cycle. Cell divisions produce population of bacteria infected with the prophage. The cell lyses, releasing phages. Lytic cycle is induced or Lysogenic cycle is entered Lysogenic cycle Prophage The bacterium reproduces, copying the prophage and transmitting it to daughter cells. Phage DNA integrates into the bacterial chromosome, becoming a prophage. New phage DNA and proteins are synthesized and assembled into phages.

Reproductive Cycles of Animal Viruses There are two key variables used to classify viruses that infect animals: –DNA or RNA? –Single-stranded or double-stranded?

Table 19-1

Table 19-1a

Table 19-1b

Fig Capsid RNA Envelope (with glycoproteins) Capsid and viral genome enter the cell HOST CELL Viral genome (RNA) Template mRNA ER Glyco- proteins Capsid proteins Copy of genome (RNA) New virus

RNA as Viral Genetic Material The broadest variety of RNA genomes is found in viruses that infect animals Retroviruses use reverse transcriptase to copy their RNA genome into DNA HIV (human immunodeficiency virus) is the retrovirus that causes AIDS (acquired immunodeficiency syndrome)

Fig Glycoprotein Viral envelope Capsid RNA (two identical strands) Reverse transcriptase HIV Membrane of white blood cell HIV entering a cell 0.25 µm Viral RNA RNA-DNA hybrid HOST CELL Reverse transcriptase DNA NUCLEUS Provirus Chromosomal DNA RNA genome for the next viral generation mRNA New virus New HIV leaving a cell

Fig. 19-8a Glycoprotein Reverse transcriptase HIV RNA (two identical strands) Capsid Viral envelope HOST CELL Reverse transcriptase Viral RNA RNA-DNA hybrid DNA NUCLEUS Provirus Chromosomal DNA RNA genome for the next viral generation mRNA New virus

Fig. 19-8b HIV Membrane of white blood cell HIV entering a cell 0.25 µm New HIV leaving a cell

Emerging Viruses Emerging viruses are those that appear suddenly or suddenly come to the attention of scientists Severe acute respiratory syndrome (SARS) recently appeared in China Outbreaks of “ new ” viral diseases in humans are usually caused by existing viruses that expand their host territory

Fig (a) The 1918 flu pandemic (b) Influenza A H5N1 virus (c) Vaccinating ducks 0.5 µm

Fig

Fig Prion Normal protein Original prion New prion Aggregates of prions

Fig. 19-UN1 Phage DNA Bacterial chromosome The phage attaches to a host cell and injects its DNA Prophage Lysogenic cycle Temperate phage only Genome integrates into bacterial chromosome as prophage, which (1) is replicated and passed on to daughter cells and (2) can be induced to leave the chromosome and initiate a lytic cycle Lytic cycle Virulent or temperate phage Destruction of host DNA Production of new phages Lysis of host cell causes release of progeny phages

Fig. 19-UN2 Time A B Number of bacteria Number of viruses

Fig. 19-UN3