Two Fundamental Puzzles And Lattice SUSY S.Arianos, A.D’Adda, A.Feo, I.Kanamori, K.Nagata, J.Saito J.Kato, A.Miyake, T.Tsukioka, Y.Uchida,

Slides:



Advertisements
Similar presentations
A journey inside planar pure QED CP3 lunch meeting By Bruno Bertrand November 19 th 2004.
Advertisements

Uses of Chern-Simons Actions J. Zanelli CECS – Valdivia (Chile) Ten Years of the AdS/CFT Conjecture Buenos Aires, December 2007.
D=6 supergravity with R 2 terms Antoine Van Proeyen K.U. Leuven Dubna, 16 December 2011 collaboration with F. Coomans, E. Bergshoeff and E. Sezgin.
Lattice Spinor Gravity Lattice Spinor Gravity. Quantum gravity Quantum field theory Quantum field theory Functional integral formulation Functional integral.
1 Lattice Formulation of Topological Field theory Tomohisa Takimi (NCTU) Ref) K. Ohta, T.T Prog.Theor. Phys. 117 (2007) No2 [hep-lat / ] (Too simple)
String Field Theory Non-Abelian Tensor Gauge Fields and Possible Extension of SM George Savvidy Demokritos National Research Center Athens Phys. Lett.
1 Superstring vertex operators in type IIB matrix model Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK & Sokendai) String Theory and Quantum Field.
Fun with Computational Physics: Non-commutative Geometry on the Lattice Alberto de Campo 1, Wolfgang Frisch 2, Harald Grosse 3, Natascha Hörmann 2, Harald.
Chiral freedom and the scale of weak interactions.
Symmetries By Dong Xue Physics & Astronomy University of South Carolina.
Effective field theories for QCD with rooted staggered fermions Claude Bernard, Maarten Golterman and Yigal Shamir Lattice 2007, Regensburg.
On-Shell Methods in Field Theory David A. Kosower International School of Theoretical Physics, Parma, September 10-15, 2006 Lecture III.
Field Theory: The Past 25 Years Nathan Seiberg (IAS) The Future of Physics October, 2004 A celebration of 25 Years of.
New Gauge Symmetries from String Theory Pei-Ming Ho Physics Department National Taiwan University Sep. 23,
LATTICE Regensburg1 Lattice Formulation of N=4 D=3 Twisted Super Yang-Mills Kazuhiro NAGATA Dept. of Phys., Indiana Univ. A. D’Adda INFN Torino,
1 Lattice Formulation of Two Dimensional Topological Field Theory Tomohisa Takimi ( 基研、理研 ) K. Ohta, T.T Prog.Theor. Phys. 117 (2007) No2 hep-lat
Exact Supersymmetry on the Lattice Noboru Kawamoto (Hokkaido University) CFT and Integrability In memory of Alexei Zamolodchikov Dec.18, Seoul.
(Hokkaido University)
Monday, Apr. 2, 2007PHYS 5326, Spring 2007 Jae Yu 1 PHYS 5326 – Lecture #12, 13, 14 Monday, Apr. 2, 2007 Dr. Jae Yu 1.Local Gauge Invariance 2.U(1) Gauge.
A direct relation between confinement and chiral symmetry breaking in temporally odd-number lattice QCD Lattice 2013 July 29, 2013, Mainz Takahiro Doi.
String solitons in the M5-brane worldvolume with a Nambu-Poisson structure and Seiberg-Witten map Tomohisa Takimi (NTU) Ref ) Kazuyuki Furuuchi, T.T JHEP08(2009)050.
Yuya Sasai (Yukawa Institute for Theoretical Physics, Kyoto University) in collaboration with N. Sasakura (YITP) JHEP 0906, 013 (2009) [arXiv: ]
The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab.
Wednesday, Apr. 23, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #24 Wednesday, Apr. 23, 2003 Dr. Jae Yu Issues with SM picture Introduction.
Noncommutative Quantum Mechanics Catarina Bastos IBERICOS, Madrid 16th-17th April 2009 C. Bastos, O. Bertolami, N. Dias and J. Prata, J. Math. Phys. 49.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
Some Aspects of Gauge Theories on Noncommutative Spacetime Xavier Calmet University of Brussels (ULB)
Super Virasoro Algebras from Chiral Supergravity Ibaraki Univ. Yoshifumi Hyakutake Based on arXiv:1211xxxx + work in progress.
Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions Talk at KEK for String Advanced Lectures,
Quantum Gravity and emergent metric Quantum Gravity and emergent metric.
Fuzzy Topology, Quantization and Long-distance Gauge Fields SSss S.Mayburov Hep-th Quantum space-time and novel geometries: Discrete (lattice)
Expanding (3+1)-dimensional universe from a Lorentzian matrix model for superstring theory in (9+1)-dimensions Seminar at University of Tokyo,
11 Super Lattice Brothers Tomohisa Takimi (NCTU) 14 th May 2008 at (NCU) Super Lattice gauge theories.
Internal symmetry :SU(3) c ×SU(2) L ×U(1) Y standard model ( 標準模型 ) quarks SU(3) c leptons L Higgs scalar Lorentzian invariance, locality, renormalizability,
Emergence of space, general relativity and gauge theory from tensor models Naoki Sasakura Yukawa Institute for Theoretical Physics.
2 Time Physics and Field theory
H. Quarks – “the building blocks of the Universe” The number of quarks increased with discoveries of new particles and have reached 6 For unknown reasons.
Maximal super Yang-Mills theories on curved background with off-shell supercharges 総合研究大学院大学 藤塚 理史 共同研究者: 吉田 豊 氏 (KEK), 本多 正純 氏 ( 総研大 /KEK) based on M.
The inclusion of fermions – J=1/2 particles
Two-dimensional SYM theory with fundamental mass and Chern-Simons terms * Uwe Trittmann Otterbein College OSAPS Spring Meeting at ONU, Ada April 25, 2009.
Monday, Mar. 10, 2003PHYS 5326, Spring 2003 Jae Yu 1 PHYS 5326 – Lecture #14 Monday, Mar. 10, 2003 Dr. Jae Yu Completion of U(1) Gauge Invariance SU(2)
9/10/2007Isaac Newton Institute1 Relations among Supersymmetric Lattice Gauge Theories So Niels Bohr Institute based on the works arXiv:
1 A non-perturbative study of Supersymmetric Lattice Gauge Theories Tomohisa Takimi ( 基研 )
1 Superstring vertex operators in type IIB matrix model arXiv: [hep-th], [hep-th] Satoshi Nagaoka (KEK) with Yoshihisa Kitazawa (KEK &
A.Sako S.Kuroki T.Ishikawa Graduate school of Mathematics, Hiroshima University Graduate school of Science, Hiroshima University Higashi-Hiroshima ,Japan.
11 A non-perturbative analytic study of the supersymmetric lattice gauge theory Tomohisa Takimi (NCTU) Ref) K. Ohta, T.T Prog.Theor. Phys. 117 (2007) No2.
} } Lagrangian formulation of the Klein Gordon equation
Lecture 7. Tuesday… Superfield content of the MSSM Gauge group is that of SM: StrongWeakhypercharge Vector superfields of the MSSM.
Physics 222 UCSD/225b UCSB Lecture 12 Chapter 15: The Standard Model of EWK Interactions A large part of today’s lecture is review of what we have already.
1 1 A lattice formulation of 4 dimensional N=2 supersymmetric Yang-Mills theories Tomohisa Takimi (TIFR) Ref) Tomohisa Takimi arXiv: [hep-lat]
1 Lattice Formulation of Two Dimensional Topological Field Theory Tomohisa Takimi ( 理研、川合理論物 理 ) K. Ohta, T.T Prog.Theor. Phys. 117 (2007) No2 [hep-lat.
The condensate in commutative and noncommutative theories Dmitri Bykov Moscow State University.
1 NJL model at finite temperature and chemical potential in dimensional regularization T. Fujihara, T. Inagaki, D. Kimura : Hiroshima Univ.. Alexander.
10/31/2006Joint Meeting of Pacific Region Particle Physics Communities 1 Lattice Formulation of N=4 D=3 Twisted Super Yang-Mills Kazuhiro NAGATA Dept.
Intro to SUSY II: SUSY QFT Archil Kobakhidze PRE-SUSY 2016 SCHOOL 27 JUNE -1 JULY 2016, MELBOURNE.
Fundamental principles of particle physics Our description of the fundamental interactions and particles rests on two fundamental structures :
Syo Kamata Rikkyo University In collaboration with Hidekazu Tanaka.
Spontaneous Symmetry Breaking and the
Lagrange Formalism & Gauge Theories
Takaaki Nomura(Saitama univ)
Adjoint sector of MQM at finite N
Construction of a relativistic field theory
Magnetic supersymmetry breaking
Fermion Condensate in Lower Dimensions
Chapter III Dirac Field Lecture 1 Books Recommended:
Hyun Seok Yang Center for Quantum Spacetime Sogang University
Noncommutative Shift Invariant Quantum Field Theory
From Characters to Quantum Super-Spin Chains by Fusion
Jun Nishimura (KEK, SOKENDAI) JLQCD Collaboration:
Current Status of Exact Supersymmetry on the Lattice
Presentation transcript:

Two Fundamental Puzzles And Lattice SUSY S.Arianos, A.D’Adda, A.Feo, I.Kanamori, K.Nagata, J.Saito J.Kato, A.Miyake, T.Tsukioka, Y.Uchida,

Majorana fermion fermion + gravity Motivations Boulatov &Kazakov

Fractal Structure of 2D Quantum Gravity N.K. & Yotsuji N.K. & Watabiki Q state Potts model on random surface (c: central charge matter )

success of lattice QCD success of 2-dim. lattice quantum gravity gauge theory + matter fermion + gravity on random lattice

Lattice Fermions Free Dirac Naïve Staggered Kogut-Susskind Dirac-Kaehler (N.K. & J.Smit) (N.K. & I.Kanamori) (Kluberg-Stern et.al. & Gliozzi) y2x Ivanenko&Landau ‘28 i : flavour ? Staggered phase

Dirac Kaehler Fermion

staggered phase species doublers Puzzle 1 Is the staggered phase or species doublers or the “flavour” degrees of freedom physical ? dual Dirac-Kaehler fermion

Quantization and Twisted SUSY (Two dimensional Abelian BF) Nilpotency of BRS charge s Auxiliary field Off-shell invariance Kato,N.K.&Uchida Continuum N=D=2 Twisted SUSY Tsukioka, N.K., Kato, Miyake, Uchida

9 N=2 SUSY in two dimensions Dirac-Kaehler Twist (N=2) Cont: Latt: Gauged Latt: Twisted N=2 SUSY

Compatibility of Shifts We need a modified Leibniz rule for too !

Symm. Choice Asymm. Choice Twisted N=D=2 Lattice SUSY Algebra Cond. for Twisted N=D=2 Solutions Equivalent to orbifold construction: by Kaplan et.al.

N=D=2 SUSY Dirac-Kaehler Twist Dirac-Kaehler fermion i : flavour ? Extended SUSY suffix y2x 2-dim. N=2 3-dim. N=4 4-dim. N=4 #boson = #fermion super charges in d-dim. Dirac-Kaehler twisting Answer to the Puzzle 1

Jacobi Identities … Define fermionic link components … Auxiliary Field

Twisted N=2 Super Yang-Mills Action Action has twisted SUSY exact form. Off-shell SUSY invariance for all twisted super charges.

Bosonic part of the Action

Fermionic part of the Action … … (1) (2) (1) (2)

Higer dimensional extension is possible: 3-dim. N=4 super Yang-Mills

“inconsistency” When Bruckmann Kok but if we introduce the following “mild non-commutativity”: then In general Two Problems

Modified Leibniz rule + Mild non-commutativity Hopf algebraic Field Theory Concrete representation of this non-commutativity Lattice version of Moyal product Orbifold condition

A possible solution We claim: if there is covariantly constant super parameter which has opposite shift of and commutes with all the super covariant derivatives: compensates the link holes. lattice SUSY and gauge invariant ! operation makes link holes and thus loses gauge invariance. gets coordinate dependence super gravity

Gauge Theory on the Random Lattice 01230123 ・・・・ ・・・・ ・・・・ Form Simplex 1 302 1 Gauge Theory + Gravity ? SUSY ? Boson Fermion ?

Generalized Gauge Theories in arbitrary dimensions gauge field gauge parameter derivative curvature gauge trans. Chern-Simons Topological Yang-Mills N.K. & Watabiki ‘ 91

Puzzle 2 What is the role of “quaternion” in generalized gauge theory ?

Single lattice translation as SUSY transformation Super parameter SUSY algebra

Matrix Representation are diagonal. Two step translation as SUSY transformation

Partial answer to Puzzle 2 Quaternion may be fundamentally related to the lattice SUSY transformation. Chirality may play an important role in the transformation. Differential form structure for Dirac-Kaeher mechanism should be essentially introduced to accommodate super gravity nature.