Towards comparisons between TFluka and TGeant3 ( within CbmRoot Framework) Denis Bertini (IT-GSI) Antonin Maire (IPHC Strasbourg)

Slides:



Advertisements
Similar presentations
TIERRAS: an AIRES package to simulate high energy cosmic ray showers underground and underwater Matías Tueros Instituto de Física La Plata – Universidad.
Advertisements

Precision validation of Geant4 electromagnetic physics Katsuya Amako, Susanna Guatelli, Vladimir Ivanchenko, Michel Maire, Barbara Mascialino, Koichi Murakami,
Stefan Roesler SC-RP/CERN on behalf of the CERN-SLAC RP Collaboration
Use of G EANT 4 in CMS AIHENP’99 Crete, April 1999 Véronique Lefébure CERN EP/CMC.
LCD group seminar Peter Speckmayer 4. August /3/20091GEANT4 seminar, Peter Speckmayer.
GEANT4 Simulations of TIGRESS
FLUKA radioprotection calculations Maria – Ana Popovici Politehnica University of Bucharest.
ATLAS LHCf Detector 140m away from the interaction point LHCf: calibration of hadron interaction models for high energy cosmic-ray physics at the LHC energy.
Hall D Photon Beam Simulation and Rates Part 1: photon beam line Part 2: tagger Richard Jones, University of Connecticut Hall D Beam Line and Tagger Review.
Pion yield studies for proton drive beams of 2-8 GeV kinetic energy for stopped muon and low-energy muon decay experiments Sergei Striganov Fermilab Workshop.
Calorimetry and Showers Learning Objectives Understand the basic operation of a calorimeter (Measure the energy of a particle, and in the process, destroy.
14 Overview of Geant4 Examples 2 nd Finnish Geant4 Workshop 6-7 June 2005 Dennis Wright (SLAC)
17-19 Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan Oct, 2007Geant4 Japan 2007 Geant4 Japan.
PLANETOCOSMICS L. Desorgher, M. Gurtner, E.O. Flückiger, and P. Nieminen Physikalisches Institut, University of Bern ESA/ESTEC.
CBM Software Meeting 1 CBM Simulation & Analysis Framework M. Al-Turany, D. Bertini.
Sergey Ananko Saint-Petersburg State University Department of Physics
IFluka : a C++ interface between Fairroot and Fluka Motivations Design The CBM case: –Geometry implementation –Settings for radiation studies –Global diagnosis.
Usage of ROOT geometry with GEANT4
Geant4 Collaboration 1 Electromagnetic Physics Authors: P. Gumplinger, M. Maire, P. Nieminen, M.G. Pia, L. Urban Budker Inst. of Physics IHEP Protvino.
Radiation levels in CBM Radiation effects iFluka (Fluka C++ interface to CbmRoot) Fluka Geometry Models Results Conclusion.
Geant4 Electromagnetic Physics Introduction V.Ivanchenko, M.Maire, M.Verderi  Process interface  Physics categories  Electromagnetic physics  PhysicsList.
IFluka : a C++ interface between Fairroot and Fluka Motivations Design The CBM case: –Geometry implementation –Settings for radiation studies –Global diagnosis.
NEUTRON OPTICS & SHIELDING GROUP NATALIIA CHERKASHYNA TAP MEETING 23 RD OF JANUARY, 2014 Latest Developments on Shielding and Backgrounds.
FAIR Simulation & Analysis Framework FairRoot M. Al-Turany, D. Bertini, F. Uhlig GSI-IT.
FLUKA Rechnungen für das CBM Experiment an FAIR
ALICE Simulation Framework Ivana Hrivnacova 1 and Andreas Morsch 2 1 NPI ASCR, Rez, Czech Republic 2 CERN, Geneva, Switzerland For the ALICE Collaboration.
Inter-comparison of Medium-Energy Neutron Attenuation in Iron and Concrete (8) H. Hirayama and Attenuation Length Sub-Working Group in Japan.
Andreas Morsch, CERN EP/AIP CHEP 2003 Simulation in ALICE Andreas Morsch For the ALICE Offline Project 2003 Conference for Computing in High Energy and.
CHEP06, Mumbai-India, Feb 2006V. Daniel Elvira 1 The CMS Simulation Validation Suite V. Daniel Elvira (Fermilab) for the CMS Collaboration.
The FLUKA high energy cosmic ray generator: predictions for the charge ratio of muons detected underground G. Battistoni, A. Margiotta, S. Muraro, M. Sioli.
Hadronic Interaction Studies for LHCb Nigel Watson/Birmingham [Thanks to Silvia M., Jeroen v T.]
1 Status and Plans for Geant4 Physics Linear Collider Simulation Workshop III 2-5 June 2004 Dennis Wright (SLAC)
Detector Simulation Presentation # 3 Nafisa Tasneem CHEP,KNU  How to do HEP experiment  What is detector simulation?
The Virtual MonteCarlo D.Adamova 2, V.Berejnoi 1, R.Brun 1, F.Carminati 1, A.Fassó 1, E.Futo 1, I.Gonzalez 3, I.Hrivnacova 4, A.Morsch 1 1 CERN, Geneva;
Geant4 in production: status and developments John Apostolakis (CERN) Makoto Asai (SLAC) for the Geant4 collaboration.
Precision Validation of Geant4 Electromagnetic Physics Geant4 DNA Project Meeting 26 July 2004, CERN Michela.
Detector Monte-Carlo ● Goal: Develop software tools to: – Model detector performance – Study background issues – Calculate event rates – Determine feasibility.
The CMS Simulation Software Julia Yarba, Fermilab on behalf of CMS Collaboration 22 m long, 15 m in diameter Over a million geometrical volumes Many complex.
Electronuclear Interactions in FLUKA
CBM Software Meeting 1 CBM Simulation & Analysis Framework Geant3 / Gean4 configuration M. Al-Turany, D. Bertini.
Target Simulations for Hadron, Electron and Heavy-Ion Beams 2 nd High-Power Targetry Workshop Oak Ridge, TN October 10-14, 2005 Fermilab High-Power Targetry.
An introduction Luisella Lari On behalf of the FLUKA collaboration CAoPAC: Computer-Aided Optimization of Particle Accelerator Workshop March 2015.
John Apostolakis & Makoto Asai for the Geant4 Collaboration 1(Draft) SNA-MC 2010.
Radiation study of the TPC electronics Georgios Tsiledakis, GSI.
Luciano Pandola, INFN Gran Sasso Luciano Pandola INFN Gran Sasso Genova, July 18 th, 2005 Geant4 and the underground physics community.
Marina Golubeva, Alexander Ivashkin Institute for Nuclear Research RAS, Moscow AGeV simulations with Geant4 and Shield Geant4 with Dpmjet-2.5 interface.
1 Giuseppe G. Daquino 26 th January 2005 SoFTware Development for Experiments Group Physics Department, CERN Background radiation studies using Geant4.
STAR Simulation. Status and plans V. Perevoztchikov Brookhaven National Laboratory,USA.
1 Study of Data from the GLAST Balloon Prototype Based on a Geant4 Simulator Tsunefumi Mizuno February 22, Geant4 Work Shop The GLAST Satellite.
Feb. 3, 2007IFC meeting1 Beam test report Ph. Bruel on behalf of the beam test working group Gamma-ray Large Area Space Telescope.
ROOT Geometry PackageL1 The New ROOT Geometry Package ACAT2002 Moscow 24 June Ren é Brun, Andrei & Mihaela Gheata CERN.
MONTE CARLO TRANSPORT SIMULATION Panda Computing Week 2012, Torino.
Geant4 Simulation for KM3 Georgios Stavropoulos NESTOR Institute WP2 meeting, Paris December 2008.
Status of TFluka: geometry and validation Andrei Gheata ALICE Off-line week, 21 Feb
Status of Sirene Maarten de Jong. What?  Sirene is a program that simulates the detector response to muons and showers  It is based on the formalism.
A Virtual Montecarlo (VMC) Application for AMS-01
Status of geometrical modeler
Report to Delta Review: Hadronic Validation
Geant4 REMSIM application
Monte Carlo studies of the configuration of the charge identifier
Gamma-ray Albedo of the Moon Igor V. Moskalenko (Stanford) & Troy A
(CMS GEANT4 simulation)
The New ROOT Geometry Package
The Hadrontherapy Geant4 advanced example
Use of Geant4 in experiment interactive frameworks AliRoot
Higgs Factory Backgrounds
Geant4 in HARP V.Ivanchenko For the HARP Collaboration
Precision validation of Geant4 electromagnetic physics
The Geant4 Hadrontherapy Advanced Example
Background Simulations at Fermilab
Presentation transcript:

Towards comparisons between TFluka and TGeant3 ( within CbmRoot Framework) Denis Bertini (IT-GSI) Antonin Maire (IPHC Strasbourg)

Muon Collaboration Meeting 2 Outline CbmRoot ( Simulation and Analysis framework) –Virtual Monte Carlo ( ROOT release 5.12 ) –TGeant3 ( version 2005 ) –TFluka (v4-04-Rev05, using Fluka version ) Fluka/G3 MCStack structure Comparisons –mediums (10) cm ( Xo = 1.76 cm, λi = 16.7 cm) ( 30) cm ( Xo = 18.8 cm, λi = 38.1 cm ) (1-3 GeV) ( 5 GeV) –Beam particles: 5000 –Secondaries : Ethres.= 50 KeV Summary

Muon Collaboration Meeting 3 Virtual Monte Carlo (VMC) User Code VMC Virtual Geometrical Modeller G3 G3 transport G4 transport G4 FLUKA transport FLUKA Geometrical Modeller Reconstruction Visualisation

Muon Collaboration Meeting 4 What is Fluka? FLUKA Particle Transport Monte Carlo Code –Has evolved since long into a mature system. –Evolution based on thorough physics validation. –Almost unique capabilities for simulating hadronic interactions including low-energy neutron transport Its state of the art physics capabilities comprise –Hadron-hadron, hadron-nucleus, and gamma-nucleus interactions 0-10^4 TeV –Nucleus-nucleus interactions 0-10^4 TeV/n (RQMD, DPMJETIII) –Electromagnetic and µ interactions 1 keV-10^4 TeV –Neutrino interactions and nucleon decays FLUKA has proven capabilities in: –Accelerator design and shielding (standard tool at CERN for beam-machine and Radioprotection studies –Dosimetry and hadro-therapy –Space radiation and cosmic ray showers in the atmosphere (Support by NASA, “de facto” standard tool for all aircraft dosimetry studies in Europe)

Muon Collaboration Meeting 5 Interface to FLUKA: Geometry and Navigation TFluka TVirtualMC TFlukaMCGeometry TFluka TGeoMCGeometry idnrwr g1wr g1rtwr conhwr inihwr jomiwr lkdbwr lkfxwr lkmgwr lkwr nrmlwr rgrpwr isvhwr magfld FLUKA TGeo (1) Geometry Definition (2) Navigation User Application Interface implemented by A. Gheata

Muon Collaboration Meeting 6 Interface to FLUKA: Physics Configuration TFluka TVirtualMC TFluka TFlukaScoringOption TFluka TFlukaConfigOption FLUKA Text Input TFlukaCerenkov User Application Generated from C++ Macros

Muon Collaboration Meeting 7 TGeo -> Fluka input file ************* MATERIALS ********************** * MATERIAL e HYDROGEN MATERIAL e CARBON MATERIAL e FLUORINE MATERIAL e ALUMINUM MATERIAL e SILICON MATERIAL e IRON MATERIAL e GOLD MATERIAL 3.750e AIR COMPOUND AIR ********************* TGEO MATERIAL ASSIGNMENTS ********************* * * * Assigning material: air to Volume: cave ASSIGNMAT * Assigning material: carbon to Volume: pipe1 ASSIGNMAT * Assigning material: vacuum to Volume: pipevac1 ASSIGNMAT //--- define some materials TGeoMaterial *matVacuum = new TGeoMaterial("Vacuum", 0,0,0) TGeoMaterial *matAl = new TGeoMaterial("Al", 26.98,13,2.7); //--- define some media TGeoMedium *Vacuum = new TGeoMedium("Vacuum",1, matVacuum) TGeoMedium *Al = new TGeoMedium("Root Material",2, matAl); // Define the geometry using TGeo Class TGeoVolume *cave = geom->MakeBox("cave", Vacuum, 25., 25., 5.); cave->SetVisibility(kFALSE); TGeoVolume *pipe = geom->MakeBox("pipe", Al, 5., 20., 5.) pipe->SetLineColor(kBlue); Top->AddNode(pipe, 1, cave); TGeoVolume *pipe_vac = geom->MakeBox("pipe_vac", Al, 17.5, 5., 5.); pipe_vac->SetLineColor(kBlue); Top->AddNode(pipe_vac, 1, pipe); ROOT Macro to Define Materials and Geometry

Muon Collaboration Meeting 8 Physics config. input file void Config() { // Set Random Number seed gRandom->SetSeed(12345); TFluka * gMC = new TFluka("C++ Interface to Fluka", 0); // Physics process control gMC->SetProcess("DCAY",1); gMC->SetProcess("PAIR",1); gMC->SetProcess("COMP",1); gMC->SetProcess("PHOT",1); gMC->SetProcess("PFIS",0); gMC->SetProcess("DRAY",1); gMC->SetProcess("ANNI",1); gMC->SetProcess("BREM",1); gMC->SetProcess("MUNU",1); gMC->SetProcess("CKOV",1); gMC->SetProcess("HADR",1); gMC->SetProcess("LOSS",2); gMC->SetProcess("MULS",1); gMC->SetProcess("RAYL",1); Float_t cut = 1.e-3; // 1MeV cut by default Float_t tofmax = 1.e10; gMC->SetCut("CUTGAM", cut); gMC->SetCut("CUTELE", cut); gMC->SetCut("CUTNEU", cut); gMC->SetCut("CUTHAD", cut); gMC->SetCut("CUTMUO", cut); gMC->SetCut("BCUTE", cut); gMC->SetCut("BCUTM", cut); gMC->SetCut("DCUTE", cut); gMC->SetCut("DCUTM", cut); gMC->SetCut("PPCUTM", cut); gMC->SetCut("TOFMAX", tofmax); ROOT Macro for Fluka Physics process control *Global process and cut settings * * --- DCAY --- Decays. Flag = 1 * Decays are on by default * * --- PAIR --- Pair production by gammas, muons and hadrons. Flag = 1, PPCUTM = 0.001, PPCUTE = EMFCUT PHOT-THR * * +++ BREM --- Bremsstrahlung by muons/hadrons. Flag = -1, BCUTM = PAIRBREM * * --- COMP --- Compton scattering Flag = 1 EMFCUT PHOT-THR * * --- PHOT --- Photoelectric effect. Flag = 1 EMFCUT PHOT-THR * * --- PFIS --- Photonuclear interaction Flag = 0 PHOTONUC * * --- ANNI --- Positron annihilation. Flag = 1 EMFCUT ANNH-THR * * --- MUNU --- Muon nuclear interaction. Flag = 1 MUPHOTON * * --- HADR --- Hadronic interactions. Flag = 1 * *Hadronic interaction is ON by default in FLUKA * * --- MULS --- Muliple Scattering. Flag = 1 * *Multiple scattering is ON by default in FLUKA * * --- RAYL --- Rayleigh Scattering. Flag = 1 * Fluka input file

Muon Collaboration Meeting 9 G3/FLUKA: Differences in Stepping Behaviour Sensitive Volume 1 2 Geant 3 1: entering (Id1) 1: exiting (Id1) 2: entering (Id2) 2: exiting (Id2) Fluka 1: entering (Id1) 1: disappeared (Id1) 2: entering (Id2) 2: exiting (Id2) 1: entering (Id3) 1: exiting (Id3) 2 Hits: 3 Hits 2 part. in Stack 3 part. in Stack ! G3/Fluka MCStack with different structure ! TrackId1 TrackId3 TrackId2 primary μ redundancy ! Suppressed redundancy

Muon Collaboration Meeting 10 Type of exiting particles for Pion beam (3 GeV) on C (30 cm ) / Iron (10 cm )

Muon Collaboration Meeting 11 Type of exiting particles for Proton beam (5 GeV) on C (30 cm ) & Iron (30 cm )

Muon Collaboration Meeting 12 Pions 3 GeV on Carbon ( 30 cm ) ! x 3

Muon Collaboration Meeting 13 Protons 5 Gev on Carbon (30 cm) ! -20 %! x 2

Muon Collaboration Meeting 14 Protons 5GeV on Iron (10 cm) ! + 20%

Muon Collaboration Meeting 15 Pions 3GeV on Iron (10 cm) ! +10 %

Muon Collaboration Meeting 16 Pions 1 Gev on Iron (10 cm) ! +25 %

Muon Collaboration Meeting 17 Primary Pions 3GeV/c on Iron 10 cm TGeant3

Muon Collaboration Meeting 18 Primary Pions 3GeV/c on Iron 10 cm TFluka ???

Muon Collaboration Meeting 19 Secondary Pions P vs Z vertex ( Pi Beam at 3GeV on 10cm Iron) TFLUKATGEANT3

Muon Collaboration Meeting 20 Summary Use of VMC to compare Fluka& Geant –needs closer collaboration with Fluka team VMC TFluka team To be done –crosscheck with native Fluka –Physics validation with dedicated experimental data sets