Nucleon resonances via H,D(  ) reactions GeV  Experiments at GeV  Hall at LNS 2001-02: GeV  Hall, 2003: STB tagger II, SCISSORS II, STB special.

Slides:



Advertisements
Similar presentations
Introduction Glasgow’s NPE research Group uses high precision electromagnetic probes to study the subatomic structure of matter. Alongside this we are.
Advertisements

1 Eta production Resonances, meson couplings Humberto Garcilazo, IPN Mexico Dan-Olof Riska, Helsinki … exotic hadronic matter?
Hadron physics with GeV photons at SPring-8/LEPS II
HL-2 April 2004Kernfysica: quarks, nucleonen en kernen1 Outline lecture (HL-2) Quarkonium Charmonium spectrum quark-antiquark potential chromomagnetic.
Measurement of the  n(p)  K +   (p) at Jefferson Lab Sergio Anefalos Pereira Laboratori Nazionali di Frascati.
The Electromagnetic Structure of Hadrons Elastic scattering of spinless electrons by (pointlike) nuclei (Rutherford scattering) A A ZZ  1/q 2.
N*(2007) observed at LNS Sendai H. Shimizu Laboratory of Nuclear Science Tohoku University Sendai NSTAR2007, Sep.5-8, 2007, Bonn 1670.
Excitation of the Roper Resonance in Single- and Double-Pion Production in NN collisions Roper‘s resonance Roper‘s resonance a resonance without seeing.
11 Primakoff Experiments with EIC A. Gasparian NC A&T State University, Greensboro, NC For the PrimEx Collaboration Outline  Physics motivation:  The.
Study of two pion channel from photoproduction on the deuteron Lewis Graham Proposal Phys 745 Class May 6, 2009.
Ralf W. Gothe Nucleon Transition Form Factors Beijing Transition Form Factors at JLab: The Evolution of Baryonic Degrees of Freedom Ralf W. Gothe.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction: Polarisation Transfer & Cross-Section Measurements.
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
T.C. Jude D.I. Glazier, D.P. Watts The University of Edinburgh Strangeness Photoproduction At Threshold Energies.
Sevil Salur for STAR Collaboration, Yale University WHAT IS A PENTAQUARK? STAR at RHIC, BNL measures charged particles via Time Projection Chamber. Due.
Yusuke TSUCHIKAWA R. Hashimoto, Q. He, T. Ishikawa, S. Masumoto, M. Miyabe, N. Muramatsu, H. Shimizu, Y. Tajima, H. Yamazaki, R. Yamazaki, and FOREST collaboration.
On Nuclear Modification of Bound Nucleons On Nuclear Modification of Bound Nucleons G. Musulmanbekov JINR, Dubna, Russia Contents.
Evidence for a Narrow S = +1 Baryon Resonance in Photoproduction from the Neutron [Contents] 1. Introduction 2. Principle of experiment 3. Experiment at.
1 Formation spectra of  -mesic nuclei by (  +,p) reaction at J-PARC and chiral symmetry for baryons Hideko Nagahiro (RCNP) Collaborators : Daisuke Jido.
Graphic from poster by Sarah Lamb, UConn Honors Program event Frontiers in Undergraduate Research, April 2009 Collimator subtends
Motivation. Why study ground state hyperon electroproduction? CLAS detector and analysis. Analysis results. Current status and future work. M. Gabrielyan.
Hadron physics Hadron physics Challenges and Achievements Mikhail Bashkanov University of Edinburgh UK Nuclear Physics Summer School I.
Probe resolution (GeV) N π,  Q 2 =12 GeV 2 Q 2 =6 GeV 2 The study of nucleon resonance transitions provides a testing ground for our understanding.
V.L. Kashevarov. Crystal Collaboration Meeting, Mainz, September 2008 Photoproduction of    on protons ► Introduction ► Data analysis.
Test of fundamental symmetries via the Primakoff effect Test of fundamental symmetries via the Primakoff effect Liping Gan University of North Carolina.
Cross section of elementally process [5] The  -ray spectroscopy of light hypernuclei at J-PARC (E13) K. Shirotori for the Hyperball-J collaboration Department.
1 Tomoaki Hotta (RCNP, Osaka Univ.) for The LEPS Collaboration Cracow Epiphany Conference, Jan 6, 2005 Introduction LEPS experiment Results from new LD.
M. Cobal, PIF 2003 Resonances - If cross section for muon pairs is plotted one find the 1/s dependence -In the hadronic final state this trend is broken.
09/10/2005NSTAR Graal collaboration1 The Graal collaboration results and prospects Presented by Carlo Schaerf Università di Roma “Tor Vergata” and.
Sub-Nucleon Physics Programme Current Status & Outlook for Hadron Physics D G Ireland.
Dan Watts (Edinburgh), Igor Strakovsky (GWU) and the CLAS Collaboration Daria Sokhan New Measurement of Beam Asymmetry from Pion Photoproduction on the.
Hadron Spectroscopy with high momentum beam line at J-PARC K. Ozawa (KEK) Contents Charmed baryon spectroscopy New experiment at J-PARC.
Improved Measurement of d/u Asymmetry in the Nucleon Sea
Measurement of high lying nucleon resonances and search for missing state in double charged pion electroproduction off proton E.Golovach for the CLAS collaboration.
Λ and Σ photoproduction on the neutron Pawel Nadel-Turonski The George Washington University for the CLAS Collaboration.
Φ-photo-production from deuteron M. Miyabe. Outlook Physics overview Study for FSI Improvement of Eγ Summary.
Nov. 12, HAPHY. A QCD sum rule analysis of the PLB 594 (2004) 87, PLB 610 (2005) 50, and hep-ph/ Hee-Jung Lee Vicente Vento (APCTP & U. Valencia)
Beijing, Sept 2nd 2004 Rachele Di Salvo Beam asymmetry in meson photoproduction on deuteron targets at GRAAL MENU2004 Meson-Nucleon Physics and the Structure.
NEW TRENDS IN HIGH-ENERGY PHYSICS (experiment, phenomenology, theory) Alushta, Crimea, Ukraine, September 23-29, 2013 Effects of the next-to-leading order.
Daniel S. Carman Page 1 Hadron Sep , 2015 Daniel S. Carman Jefferson Laboratory N* Spectrum & Structure Analysis of CLAS Data  CLAS12 N*
09/10/2005NSTAR Graal collaboration1 The Graal collaboration results and prospects Presented by Carlo Schaerf Università di Roma “Tor Vergata” and.
Pentaquarks: Discovering new particles
Amand Faessler, Tuebingen1 Chiral Quark Dynamics of Baryons Gutsche, Holstein, Lyubovitskij, + PhD students (Nicmorus, Kuckei, Cheedket, Pumsa-ard, Khosonthongkee,
CEBAF - Continuous Electron Beam Accelerator Facility.
I=1 heavy-light tetraquarks and the Υ(mS) → Υ(nS)ππ puzzle Francisco Fernández Instituto de Física Fundamental y Matemáticas University of Salamanca.
Jan. 18, 2008 Hall C Meeting L. Yuan/Hampton U.. Outline HKS experimental goals HKS experimental setup Issues on spectrometer system calibration Calibration.
Photoproduction of Pentaquarks Seung-il Nam *1,2 Atsushi Hosaka 1 Hyun-Chul Kim 2 1.Research Center for Nuclear Physics (RCNP), Osaka University, Japan.
Exotic baryon resonances in the chiral dynamics Tetsuo Hyodo a a RCNP, Osaka b ECT* c IFIC, Valencia d Barcelona Univ. 2003, December 9th A.Hosaka a, D.
Dynamical coupled-channels approach to meson production reactions in the N* region and its application to neutrino-nucleon/nucleus reactions Hiroyuki Kamano.
Pentaquark decay width in QCD sum rules F.S. Navarra, M. Nielsen and R.R da Silva University of São Paulo, USP Brazil (  decay width) hep-ph/ (
Polarisation transfer in hyperon photoproduction near threshold Tom Jude D I Glazier, D P Watts The University of Edinburgh.
Crystal Ball Collaboration Meeting, Basel, October 2006 Claire Tarbert, Univeristy of Edinburgh Coherent  0 Photoproduction on Nuclei Claire Tarbert,
U-spin and the Radiative decay of Strange Baryons K. Hicks and D.Keller EM Transition Form Factor Workshop October 13, 2008.
15 cm Plots of missing mass spectrum and 90% interval for width of 0.5 and 10 MeV. Color lines show upper limit, lower limit and sensitivity. Search for.
Denis Parganlija (Vienna UT) Mesons in non-perturbative and perturbative regions of QCD Mesons in non-perturbative and perturbative regions of QCD Denis.
Elton S. Smith 1 JLab: Probing Hadronic Physics with Electrons and Photons Elton S. Smith Jefferson Lab V Latinamerican Symposium on Nuclear Physics Santos,
Dynamical coupled-channels study of hadron resonances and strangeness production Hiroyuki Kamano (RCNP, Osaka U.) in collaboration with B. Julia-Diaz (Barcelona.
Exotic baryons: predictions, postdictions and implications Hanoi, August 8 Maxim V. Polyakov Petersburg NPI & Liege University Outline: - predictions.
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) 2016 JAEA/ASRC Reimei.
Hadron spectroscopy Pentaquarks and baryon resonances
mesons as probes to explore the chiral symmetry in nuclear matter
Recent results on light hadron spectroscopy at BES
L*(1520) Photoproduction off Proton and Neutron from CLAS eg3 data set
Search for f-N Bound State in Jefferson Lab Hall-B
On a Search for -Mesic Nuclei at MAMI-C
Photoproduction of poh pairs on the proton
Comprehensive study of S = -1 hyperon resonances via the coupled-channels analysis of K- p and K- d reactions Hiroyuki Kamano (KEK) YITP Workshop on.
The np -> d p0 reaction measured with g11 data
Michael Dugger* Arizona State University
Proposal for an Experiment: Photoproduction of Neutral Kaons on Deuterium Spokespersons: D. M. Manley (Kent State University) W. J. Briscoe (The George.
Presentation transcript:

Nucleon resonances via H,D(  ) reactions GeV  Experiments at GeV  Hall at LNS : GeV  Hall, 2003: STB tagger II, SCISSORS II, STB special e-beam : Experiments with 0.6 < E  < 1.15 GeV 2006: FOREST construction 1. C,Cu(  ) S 11 (1535) in nuclei; Phys. Lett. B639 (2006) H(  ) proton cross section;  p→  p; Phys. Rev. C (2006) in press 3. D(  ) neutron cross section; S 11, D 15, pentaquark; submitted soon 4. H,D(  0 ) Nucleon resonances 5. C,Si,Cu(  ) E  < 0.8 GeV, threshold region

Heavy baryon (with c/b/t quarks) 3 quarks in short distance one gluon exchange field r < 0.3 fm r ~ 1 fm Light baryon (with u/d/s quarks) 3 dynamical (dressed) quarks effective chiral field (Goldstone boson exchange) diquark-quark clusterization? Perturbed region Non-perturbed region Baryon density Baryon internal energy Why light baryon? Existence of pentaquark state constituent quark model chiral quark soliton model

Spontaneous Chiral symmetry breaking current-quarks (~5 MeV)  Constituent-quarks (~350 MeV) Particles  Quasiparticles

Quark- Model Nucleon Three massive quarks 2-particle-interactions: confinement potential gluon-exchange meson-exchage (non) relativistisc chiral symmetry is not respected Succesfull spectroscopy (?)

Chiral Soliton Nucleon Mean Goldstone-fields (Pion, Kaon) Large N c -Expansion of QCD ????

Quantum numbers Quantum # Coherent :1p-1h,2p-2h,.... Quark-anti-quark pairs „stored“ in chiral mean-field Coupling of spins, isospins etc. of 3 quarks mean field  non-linear system  soliton  rotation of soliton Natural way for light baryon exotics. Also usual „3-quark“ baryons should contain a lot of antiquarks

S 11 D 15 ? P 11, P 13 S 11 D 15 ? P 11, P 13 H,D(g,h) reactions so far reported Nucleon Energy Spectrum  

Electron Beam from 300MeV LINAC 1.2 GeV STB Ring electron Synchrotron Tagged Photon Beam GeV-  Experimental Hall 17 m GeV  experiments at LNS

Pseudosphere 55 cm Backward Block(29) Backward Block(29) Forward Block(74) Forward Block(74) Solid Target Chamber Incident γ    Plastic Counters  Invariant Mass Analysis M  2 = 2E   E   (1 - cos   ) Energy :E =  E i Position :R =  R i E i /  E i SCISSORS II :206 pure CsI Crystals (1.57 str = 12.5% of 4  ) 16.2 X 0 for Forward 148 crystals 13.5 X 0 for Backward 58 crystals  + N →  + X Hydrogen/Deuterium Solid Target t = 8 cm (N T ~ 4×10 23 /cm 2 ) Identification of  meson    = (39.43±0.26)% → Decay Channel →  Decay Channel Experimental setup

M  Gate : 440—620 MeV Empirical Fitting Function: F(M  )= L(M  ) + B(M  ) L(x)=l 0 exp[ l 1 (l 2 - x) + exp( -l 1 (l 2 - x))] B(x)=exp(b 0 +b 1 x + b 2 x 2 )  Invariant Mass Double Differential Yield d 2 N/dp dcos  (at  +N CMS)

 p→  p  p→  N channel open Momentum Cut P  *(3b max)   p→  p 抽出 d  /d  d  /dp 

(p→p)(p→p)  (  p →  N) H( ,  )H reaction For E  < 1.15 GeV  (LNS) ~  (CLAS, ELSA) no third S 11 (Saghai and Li)  (E  ) ~  (  MAID) S 11 (1535) largest S 11 (1650) destructive P 11 (1720) very small + direct (Born, ,  ex.) E  > 1 GeV  p→  N not negligible  (  N) ~  (  p) at 1.1 GeV  MAID

 p→  p process Direct 3 Body          S 11 P 33 New observation:  p→  *→  →  N ~ 50% N(938) N(1535) L=0   (1720) L=0   (1670) L=0   (1750) L=0   (1232)  (1116)  (1192) 3/2 + 1/2 + 1/2 - 3/2 - 1/2 +

 p→  N,  p→  0  p phase space Jido, Oka, Hosaka Prog. Theor. Phys.106,873 (2001) N(938)-S11(1535): parity partner chiral transformation scheme  N N* N   g  N*N* /g  NN =+ or -? S 11 (1535) only is not enough  (  p→  N) = (2 ~ 3)×  (  p→  0  N)  p→  0  N process Doring, Oset, Stottman Phys. Rev. C73, (2006) Chiral unitary approach for meson-baryon scattering D 33 (1700), S 11 (1535), D 13 (1520) Jido et al. Doring et al.

D(  ) reaction ? Original motivation: =2/3, =-1/3 →difference in magnetic transitions between proton and neutron proton target: only S 11 (1535), S 11 (1650) neutron target: D 15 (1675) should be enhanced Present interest: antidecuplet state N* (S=0) originally assigned to P 11 (1710) reanalisys  N scattering PR C69(04) W=1680,  ~ 10 MeV GRAAL preliminary  n coin. Data W=1675 MeV sharp state

The anti-decuplet 1539  < 25 MeV 1862 ~ 1646 ~ 1754 Reevaluation by Diakonov and Petrov, 04 Modified analysis pN scattering Arndt et al. PRC69(04)  n measurement in D(  n)p Kunznetsov et al. preprint (05) J p :1/2 + or 1/2 - ? Width: very small < 10 MeV? Other members: S=0 sector? strongly observed in  n >>  p sharp resonance

CB-ELSA (IX International Workshop On Meson Photoproduction, Crakow,Poland,9.-13,June 2006)  N→  N exclusive measurement Total Cross Section GRAAL (hep-ex )  n→  n exclusive measurement Differential Cross Section cos  ~-0.7 proceedings, preliminary Results  n measurement: quasi-free kinematics (advantage) incomplete arrangement of neutron detectors →low statistics, not high E  resolution, spectrum deformed inclusive  measurement  d→  pn: whole kinematics, complex analysis (disadvantage) high statistics, high E  resolution, spectrum not deformed W, , J p,  transition strength,….. may be obtained precisely.

Comparison with proton data ・ broader momentum distribution ~ 20 MeV increased due to the deuteron target ・ however, good separation between  d→  pn,  d→  pn  momentum distributions in  d→  pn

 angular distributions in c.m. frame of photon incident on nucleon at rest (‘c.m.’)

Total cross section vs E   d→  pn  ’p’→  p  (  d)-  (  ’p’) Narrow resonance! rough estimate peak at E  =1020 MeV apparent width  E  ~ 80 MeV

Effects of nucleon motion in the deuteron FWHM =75 MeV solid line : F(p N ) open circles: CD-Bonn Hulthen Wave Function F(p N ) =p N 2 /((p N 2 +  2 )(p N 2 +  2 )) 2  =45.7 MeV  =260 MeV cos  Angular Distribution E=1 GeV  n cos  1  = 0.5  =10MeV (18MeV in E   =60 MeV(  E  ~100MeV)

Analysis: isobar model +impulse approx. ; neglect p-n interference and f.s.i ; on shell cross section result of  MAID for  p→  p ; result of the isobar model similar to the  MAID calculation Direct term (Born and  and  exchange): from  MAID Resonances: Mass    N A 1/2 A 3/2 D13(1520) S11(1535) varied S11(1650) varied D15(1675) varied F15(1680) D13(1700) P11(1710) varied P13(1720) varied + narrow P 11 or S 11

Angular distributions compared with calculations P 11 at 1670 MeV,  = 7.5 MeV S 11 at 1660 MeV,  = 8.5 MeV,

Total cross section P 11 at 1670 MeV,  = 7.5 MeV S 11 at 1660 MeV,  = 8.5 MeV A 1/2 = 12.5 for P 11 = for S 11 Anti-decuplet N* is established! 1/2 + or 1/2 -

S 11 (1535) S 11 (1650) Narrow P 11 D 15 (1675) P 11 (1710) P 13 (1720) Narrow S 11 neutron cross section Further measurement with FOREST  n coincidence with good geometry Parity + or – need more statistics Branching ratio  0 channel: Miyahara  channel Anti-decuplet in nuclei 7 Li(  ) S 11 (1535) resonance molecular nature? Magnetic moment