EE359 – Lecture 6 Outline Review of Last Lecture Signal Envelope Distributions Average Fade Duration Markov Models Wideband Multipath Channels Scattering.

Slides:



Advertisements
Similar presentations
OFDM Transmission over Wideband Channel
Advertisements

EE359 – Lecture 8 Outline Capacity of Fading channels Fading Known at TX and RX Optimal Rate and Power Adaptation Channel Inversion with Fixed Rate Capacity.
S Digital Communication Systems Multipath Radio Channel Addendum (extracts from J-P Linnartz: Wireless Communication CDROM)
Fading multipath radio channels Narrowband channel modelling Wideband channel modelling Wideband WSSUS channel (functions, variables & distributions)
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 4 Jan. 27 th, 2014.
1 Small-scale Mobile radio propagation Small-scale Mobile radio propagation l Small scale propagation implies signal quality in a short distance or time.
EE359 – Lecture 7 Outline Multipath Intensity Profile Doppler Power Spectrum Shannon Capacity Capacity of Flat-Fading Channels Fading Statistics Known.
Propagation Characteristics
Diversity techniques for flat fading channels BER vs. SNR in a flat fading channel Different kinds of diversity techniques Selection diversity performance.
1 SYSC4607 – Lecture 5 Outline Announcements: Tutorial important: Review of Probability Theory and Random Processes Review of Last Lecture Narrowband Fading.
EE359 – Lecture 5 Outline Review of Last Lecture Narrowband Fading Model In-Phase and Quad Signal Components Cross Correlation of RX Signal in NB Fading.
Three Lessons Learned Never discard information prematurely Compression can be separated from channel transmission with no loss of optimality Gaussian.
1 Mobile Communication Systems 1 Prof. Carlo Regazzoni Prof. Fabio Lavagetto.
Mobile Radio Propagation - Small-Scale Fading and Multipath
EE360: Lecture 15 Outline Cellular System Capacity
Wireless Communication Channels: Small-Scale Fading
ECE 4730: Lecture #10 1 MRC Parameters  How do we characterize a time-varying MRC?  Statistical analyses must be used  Four Key Characteristics of a.
Wireless Communication Channels: Small-Scale Fading
Cellular System Capacity Maximum number of users a cellular system can support in any cell. Can be defined for any system. Typically assumes symmetric.
EEE440 Modern Communication Systems Wireless and Mobile Communications.
Chapter 4 Mobile Radio Propagation: Small-Scale Fading and Multipath
1 Lecture 9: Diversity Chapter 7 – Equalization, Diversity, and Coding.
ECE 480 Wireless Systems Lecture 14 Problem Session 26 Apr 2006.
TAP Channel Measurement Fundamentals, Goals, and Plans.
Chapter 5 – Mobile Radio Propagation: Small-Scale Fading and Multipath
EE359 – Lecture 5 Outline Announcements: HW posted, due Thursday 5pm Background on random processes in Appendix B Lecture notes: No need to take notes.
EE 6332, Spring, 2014 Wireless Communication Zhu Han Department of Electrical and Computer Engineering Class 3 Jan. 22 nd, 2014.
The Wireless Channel Lecture 3.
Abdul-Aziz .M Al-Yami Khurram Masood
EE 6331, Spring, 2009 Advanced Telecommunication Zhu Han Department of Electrical and Computer Engineering Class 7 Feb. 10 th, 2009.
© 2002 Pearson Education, Inc. Commercial use, distribution, or sale prohibited. Wireless Communications Principles and Practice 2 nd Edition T.S. Rappaport.
Wireless Communications Principles and Practice 2 nd Edition T.S. Rappaport Chapter 5: Mobile Radio Propagation: Small-Scale Fading and Multipath as it.
1 What is small scale fading? Small scale fading is used to describe the rapid fluctuation of the amplitude, phases, or multipath delays of a radio signal.
September 9, 2004 EE 615 Lecture 2 Review of Stochastic Processes Random Variables DSP, Digital Comm Dr. Uf Tureli Department of Electrical and Computer.
Adaphed from Rappaport’s Chapter 5
Simulation Model for Mobile Radio Channels Ciprian Romeo Comşa Iolanda Alecsandrescu Andrei Maiorescu Ion Bogdan Technical University.
Statistical multipath channel models Hassan fayed DR.ENG MOHAB MANGOUD.
Doppler Spread Estimation in Frequency Selective Rayleigh Channels for OFDM Systems Athanasios Doukas, Grigorios Kalivas University of Patras Department.
Statistical Description of Multipath Fading
Dr. Galal Nadim.  The root-MUltiple SIgnal Classification (root- MUSIC) super resolution algorithm is used for indoor channel characterization (estimate.
TI Cellular Mobile Communication Systems Lecture 3 Engr. Shahryar Saleem Assistant Professor Department of Telecom Engineering University of Engineering.
Fading in Wireless Communications Yan Fei. Contents  Concepts  Cause of Fading  Fading Types  Fading Models.
EE359 – Lecture 4 Outline Announcements: 1 st HW due tomorrow 5pm Review of Last Lecture Model Parameters from Empirical Measurements Random Multipath.
EE359 – Lecture 6 Outline Announcements: HW due tomorrow 5pm Next 3 lectures rescheduled: 10/12 (Mon), 10/16 (Fri), 10/19 (Mon), all in Huang Eng. Center,
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 10 Outline Average P s (P b ) MGF approach for average P s Combined average and outage P s P s due to Doppler ISI P s due to ISI.
Radio Propagation - Mobile Radio Channel. Propagation - Mobile Radio Channel Difficult environment due to random, time-varying phenomena as a result of.
1 Dr. Essam Sourour Alexandria University, Faculty of Engineering, Dept. Of Electrical Engineering Introduction to Fading Channels, part 2.
1 EMLAB EM wave propagation. 2 EMLAB Impulse response Time Radio Propagation : physical model 안테나에서 나온 신호는 지형지물과 반사, 투과, 산란을 거치면서 다양한 진폭과, 시간 지연을 갖는 신호들로.
EEE 441 Wireless And Mobile Communications
Small-Scale Fading Prof. Michael Tsai 2016/04/15.
Mobile Radio Propagation - Small-Scale Fading and Multipath
الخبو صغير المقياس أو(المدى)
Statistical Multipath Channel Models
EE359 – Lecture 6 Outline Announcements: Review of Last Lecture
Midterm Review Midterm only covers material from lectures and HWs
Fading multipath radio channels
Wireless Communications Principles and Practice 2nd Edition T. S
EE359 – Lecture 4 Outline Announcements: Review of Last Lecture
Radio Propagation Review
EE359 – Lecture 4 Outline Announcements: Review of Last Lecture
EE359 – Lecture 7 Outline Announcements: Multipath Intensity Profile
EE359 – Lecture 5 Outline Announcements:
EE359 – Lecture 4 Outline Announcements: Review of Last Lecture
EE359 – Lecture 5 Outline Announcements:
EE359 – Lecture 7 Outline Announcements: Shannon Capacity
EE359 – Lecture 6 Outline Announcements: Review of Last Lecture
EE359 – Lecture 6 Outline Review of Last Lecture
Midterm Review Midterm only covers material from lectures and HWs
EE359 – Lecture 7 Outline Shannon Capacity
Presentation transcript:

EE359 – Lecture 6 Outline Review of Last Lecture Signal Envelope Distributions Average Fade Duration Markov Models Wideband Multipath Channels Scattering Function Multipath Intensity Profile Doppler Power Spectrum

Review of Last Lecture For  n ~U[0,2  ], r I (t),r Q (t) zero mean, WSS, with Uniform AoAs in Narrowband Model In-phase/quad comps have zero cross correlation and PSD is maximum at the maximum Doppler frequency l PSD used to generate simulation values Decorrelates over roughly half a wavelength

Signal Envelope Distribution CLT approx. leads to Rayleigh distribution (power is exponential) When LOS component present, Ricean distribution is used Measurements support Nakagami distribution in some environments Similar to Ricean, but models “worse than Rayleigh” Lends itself better to closed form BER expressions

Level crossing rate and Average Fade Duration LCR: rate at which the signal crosses a fade value AFD: How long a signal stays below target R/SNR Derived from LCR For Rayleigh fading Depends on ratio of target to average level (  ) Inversely proportional to Doppler frequency R t1t1 t2t2 t3t3

Markov Models for Fading Model for fading dynamics Simplifies performance analysis Divides range of fading power into discrete regions R j ={  : A j   < A j+1 } A j s and # of regions are functions of model Transition probabilities (L j is LCR at A j ): A0 A1 A2 R0 R1 R2

Wideband Channels Individual multipath components resolvable True when time difference between components exceeds signal bandwidth   NarrowbandWideband

Scattering Function Fourier transform of c(  t) relative to t Typically characterize its statistics, since c( ,t) is different in different environments Underlying process WSS and Gaussian, so only characterize mean (0) and correlation Autocorrelation is A c (  1,  2,  t)=A c ( ,  t) Statistical scattering function:   s( ,  )= F  t [A c ( ,  t)]

Multipath Intensity Profile Defined as A c ( ,  t=0)= A c (  ) Determines average (T M ) and rms (   ) delay spread Approximate max delay of significant m.p. Coherence bandwidth B c =1/T M Maximum frequency over which A c (  f)=F[A c (  )]>0 A c (  f)=0 implies signals separated in frequency by  f will be uncorrelated after passing through channel  Ac()Ac() TMTM  f A c (f) 0 Bc

Doppler Power Spectrum S c (  )=F[A c ( ,  t)]= F[A c (  t)] Doppler spread B d is maximum doppler for which S c (  )=>0. Coherence time T c =1/B d Maximum time over which A c (  t)>0 A c (  t)=0 implies signals separated in time by  t will be uncorrelated after passing through channel  Sc()Sc() BdBd

Main Points Fading distribution depends on environment Rayleigh, Ricean, and Nakagami all common Average fade duration determines how long a user is in continuous outage (e.g. for coding design) Markov model approximates fading dynamics. Scattering function characterizes rms delay and Doppler spread. Key parameters for system design. Delay spread defines maximum delay of significant multipath components. Inverse is coherence BW Doppler spread defines maximum nonzero doppler, its inverse is coherence time