A quasi-particle picture of quarks coupled with a massive boson at finite temperature ~ mass effect and complex pole ~ Kazuya Mitsutani ( YITP ) in collaboration.

Slides:



Advertisements
Similar presentations
What do we know about the Standard Model? Sally Dawson Lecture 4 TASI, 2006.
Advertisements

The speed of sound in a magnetized hot Quark-Gluon-Plasma Based on: Neda Sadooghi Department of Physics Sharif University of Technology Tehran-Iran.
7.n次の行列式   一般的な(n次の)行列式の定義には、数学的な概念がいろいろ必要である。まずそれらを順に見ていく。
9.線形写像.
時間的に変化する信号. 普通の正弦波 は豊富な情報を含んでいません これだけではラジオのような複雑な情報 を送れない 振幅 a あるいは角速度 ω を時間的に変化 させて情報を送る.
5.連立一次方程式.
相関.
ノイズ. 雑音とも呼ばれる。(音でなくても、雑 音という) 入力データに含まれる、本来ほしくない 成分.
素数判定法 2011/6/20.
フーリエ係数の性質. どこまで足す? 理想的には無限大であるが、実際に はそれは出来ない これをフーリエ解析してみる.
公開鍵暗号系 2011/05/09.
1章 行列と行列式.
本宮市立白岩小学校. 1 はじめに 2 家庭学習プログラム開発の視点 ① 先行学習(予習)を生かした 確かな学力を形成する授業づく り ② 家庭との連携を図った家庭学習の習慣化.
フーリエ級数. 一般的な波はこのように表せる a,b をフーリエ級数とい う 比率:
Excelによる積分.
1 6.低次の行列式とその応用. 2 行列式とは 行列式とは、正方行列の特徴を表す一つのスカ ラーである。すなわち、行列式は正方行列からスカ ラーに写す写像の一種とみなすこともできる。 正方行列 スカラー(実数) の行列に対する行列式を、 次の行列式という。 行列 の行列式を とも表す。 行列式と行列の記号.
計算のスピードアップ コンピュータでも、sin、cosの計算は大変です 足し算、引き算、掛け算、割り算は早いです
線形符号(10章).
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
複素数.
1 0章 数学基礎. 2 ( 定義)集合 集合については、 3セメスタ開講の「離散数学」で詳しく扱う。 集合 大学では、高校より厳密に議論を行う。そのために、議論の 対象を明確にする必要がある。 ある “ もの ” (基本的な対象、概念)の集まりを、 集合という。 集合に含まれる “ もの ” を、集合の要素または元という。
信号測定. 正弦波 多くの場合正弦波は 0V の上下で振動する しかし、これでは AD 変換器に入れら れないので、オフ セットを調整して データを取った.
1 9.線形写像. 2 ここでは、行列の積によって、写像を 定義できることをみていく。 また、行列の積によって定義される写 像の性質を調べていく。
アルゴリズムとデータ構造 補足資料 7-4 「単純交換ソート exsort.c 」 横浜国立大学 理工学部 数物・電子情報系学科 富井尚志.
3.正方行列(単位行列、逆行列、対称行列、交代行列)
Hard Gluon damping in hot QCD hep-ph/ André Peshier * Institut for Theoretical Physics, Giessen University  QCD thermodynamics  Effects due to.
地図に親しむ 「しゅくしゃくのちがう 地図を 使ってきょりを調べよ う1」 小学4年 社会. 山口駅裁判所 県立 美術館 サビエル 記念聖堂 山口市役所 地図で探そう 市民会館 県立 図書館.
Wolfgang Cassing CERN, Properties of the sQGP at RHIC and LHC energies.
JPN 312 (Fall 2007): Conversation and Composition 文句 ( もんく ) を言う.
CGC confronts LHC data 1. “Gluon saturation and inclusive hadron production at LHC” by E. Levin and A.H. Rezaeian, arXiv: [hep-ph] 4 May 2010.
第14回 プログラムの意味論と検証(3) 不動点意味論 担当:犬塚
実験5 規則波 C0XXXX 石黒 ○○ C0XXXX 杉浦 ○○ C0XXXX 大杉 ○○ C0XXXX 高柳 ○○ C0XXXX 岡田 ○○ C0XXXX 藤江 ○○ C0XXXX 尾形 ○○ C0XXXX 足立 ○○
Exercise IV-A p.164. What did they say? 何と言ってましたか。 1.I’m busy this month. 2.I’m busy next month, too. 3.I’m going shopping tomorrow. 4.I live in Kyoto.
音の変化を視覚化する サウンドプレイヤーの作成
Rikkyo University Murata.lab / RIKEN Rikkyo University Murata.lab / RIKEN Master course 2nd Kentaro Watanbe Kentaro Watanbe PHENIX Colaboration meeting.
Exploring Real-time Functions on the Lattice with Inverse Propagator and Self-Energy Masakiyo Kitazawa (Osaka U.) 22/Sep./2011 Lunch BNL.
たくさんの人がいっしょに乗れる乗り物を 「公共交通」といいます バスや電車 と 自動車 の よいところ と よくない ところ よいところ と よくない ところ を考えてみよう!
Some Topics on Chiral Transition and Color Superconductivity Teiji Kunihiro (YITP) HIM Nov. 4-5, 2005 APCTP, Pohang.
物質厚さの考察(手始め) エネルギー損失 – 物質の Stopping power, density, thickness に依る。 – 陽電子の運動量 (10-250MeV/c の領域 ) に大きく依存 しない。 – 大体、 5MeV/cm (Al), 2.5MeV/cm (Polycarbonate)
Effect of thermal fluctuation of baryons on vector mesons and low mass dileptons ρ ω Sanyasachi Ghosh (VECC, Kolkata, India)
Evolution of Emerging Flux and Associated Active Phenomena Takehiro Miyagoshi (GUAS, Japan) Takaaki Yokoyama (NRO, Japan)
Plasmino and Thermal mass in hQCD: Sang-Jin Sin (Hanyang Univ. ) ATHIC 2012, Pusan Based on arXiv: To appear. Y.seo+Y.Zhou+SS For Detail,
Masakiyo Kitazawa (Osaka Univ.) HQ2008, Aug. 19, 2008 Hot Quarks in Lattice QCD.
@ Brookhaven National Laboratory April 2008 Spectral Functions of One, Two, and Three Quark Operators in the Quark-Gluon Plasma Masayuki ASAKAWA Department.
有限温度 QCD における 励起モード 理研スパコン研究会 2010/Sep./24 北沢正清 (阪大)
J-PARC Day-1 実験の状況・ 実験家から理論屋への要望 T.Takahashi (KEK) Contents 1. Aproved Exp. on J-PARC 2. How to produce S=-2 Systems 3. E05: (K-,K+) Spectroscopy.
Contents ・ Introduction ・ Formalism ・ Results ・ Conclusion The 17 th International Spin Physics Symposium (SPIN 2006) October 2-7, 2006 Kyoto University,
21 Sep 2006 Kentaro MIKI for the PHENIX collaboration University of Tsukuba The Physical Society of Japan 62th Annual Meeting RHIC-PHENIX 実験における高横運動量領域での.
Masayasu Harada (Nagoya 理論センター研究会 「原子核・ハドロン物 理」 (August 11, 2009) based on M.H. and C.Sasaki, arXiv: M.H., C.Sasaki and W.Weise, Phys.
Quark spectrum near chiral and color-superconducting phase transitions Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70,
QCD 相転移における秩序変数 揺らぎとクォークスペクトル 根本幸雄 ( 名古屋大 ) with 北沢正清 ( 基研 ) 国広悌二 ( 基研 ) 小出知威 (Rio de Janeiro Federal U.)
QCD 相転移の臨界点近傍における 非平衡ダイナミクスについて 北沢正清(京大), 国広悌二(京大基研 ), 根本幸雄 (RIKEN-BNL) 0 T  の1コメ ント Chiral symmetry breaking Color superconductivity (CSC) critical endpoint.
K p k'k' p'p'  probability amplitude locality,Lorentz inv.gauge inv. spinor   vector A  T  electron quark scattering scattering cross section Feynman.
英語勉強会 名手⇒詫間 2015/10/22. 原文 This study says acquiring motor skills support system. There is how to acquire moor skills that coach advises learner. Motor.
カイラル相転移・カラー超伝導の 臨界温度近傍における クォークの準粒子描像 Masakiyo Kitazawa Kyoto Univ. M.K., T.Koide, T.Kunihiro and Y.Nemoto, PRD70, (2004), M.K., T.Koide, T.Kunihiro.
Quarks Quarks in the Quark-Gluon Plasma Masakiyo Kitazawa (Osaka Univ.) Tokyo Univ., Sep. 27, 2007 Lattice Study of F. Karsch and M.K., arXiv:
Takeshi Morita Tata Institute of Fundamental Research Resolution of the singularity in Gregory-Laflamme transition through Matrix Model (work in progress)
A Simulator for the LWA Masaya Kuniyoshi (UNM). Outline 1.Station Beam Model 2.Asymmetry Station Beam 3.Station Beam Error 4.Summary.
松尾 善典 Based on YM-Tsukioka-Yoo [arXiv: ] YM-Nishioka [arXiv: ]
HES-HKS & KaoS meeting. Contents Different distorted initial matrices Distorted matrix sample 6 (dist6) Distorted matrix sample 7 (dist7) Distorted matrix.
雪 ゆき. 雪や こんこ ゆき.
Spectral functions in functional renormalization group approach
Precursory Phenomena in Chiral Transition and Color Superconductivity
mesons as probes to explore the chiral symmetry in nuclear matter
Investigation of laser energy absorption by ablation plasmas
in Dense and Hot Quark Matter
Strangeness and charm in hadrons and dense matter, YITP, May 15, 2017
Overview of Potential models at finite temperature Péter Petreczky
T. Satomura, K. Okumura(Kyoto University)
A possible approach to the CEP location
Presentation transcript:

A quasi-particle picture of quarks coupled with a massive boson at finite temperature ~ mass effect and complex pole ~ Kazuya Mitsutani ( YITP ) in collaboration with Masakiyo Kitazawa ( Osaka Univ. ) Teiji Kunihiro ( YITP ) Yukio Nemoto ( Nagoya Univ. ) QCD Les Houches 2008

So then how quark behave above and near Tc ? sQGP picture –success of perfect fluid model in the analysis of the RHIC data –J/Psi, eta_c near and above Tc on the other hand… several result suggest the quasi particle with quark quantum number –success of recomb. model in RHIC phenomenology R.J.Fries, B.Muller, C.Nonaka and S.A.Bass(2003); V.Greco, C.M.Ko and P. Levai (2003); S.A.Voloshin(2003); D.Molnar and S.A.Volshin(2003) –In some non-perturbative calculations suggest quark spectral function may have several sharp peaks near Tc (SD eq., lQCD) F.Karsch and M.Kitazawa (2007),M.Harada, Y.Nemoto and S.Yoshimoto (2007)

But real quarks have finite masses –(constituent quark mass, thermal mass, current mass) In NJL Model m q = 0 ( chiral limit) ( M.Kitazawa, et.al. Phys.Lett. B633 (2006) 269 ) Quark Spectrum Near And Above Tc 3-peak structure Understood form Level Mixing What is important near Tc is fluctuation of the order parameter, i.e., chiral soft mode, for the 2 nd or nearly 2 nd order P. T. ( T.Hatsuda and T.Kunihiro, PRL55, 158(‘85) ) Chiral Soft Mode Softening of Mesonic Mode We investigate the effect of mass in a Yukawa model

Formulation Self Energy (1-loop) Yukawa coupling of scalar filed and fermion Spectral Function Deal with only positive number component cf : parity property p = 0 only for simplicity projection K P-KP-K P

Spectral functions

Pole structure of the propagator Poles are found by solving The residue at pole which indicate the strength of the excitation The residues and the sum rule of the spectral function :The sum rule for the fermion spectral function If

Pole Structure Of Propagators ( m f = 0 ) Poles of the retarded functions in the lower half plane z Real Imaginary - 2  T z: complex energy variable infinite #s of poles (A) (B)(C)

The case that m f = 0 The three residues comparable at T ~ m b which support 3-peak structure the pole distribution is symmetric with respect to the imaginary axis because m f =  = 0 The sum of the three residues approximately satisfy the sum rule Pole position T-dependence of the residues T↑

The case that m f is finite The pole at T=0 (red) moves toward the origin as T rise The pole at  0 at same T. The residue at the pole in the negative  region is depressed at T ~ m b. it support the depression of three-peak structure The sum of the residues approximately satisfy the sum rule also in this case. m f / m b = 0.1

Structural change of the pole behavior m f / m b = 0.3m f / m b = 0.2 The pole at T=0 moves toward the origin as T rise. This behavior is qualitatively same as in the case that m f / m b = 0.0,0.1 The pole at T=0 moves to large-  region as T rise. This behavior is qualitatively different from the other cases. we find that m f crit /mb ~ 0.21

Summary Spectral function –In the case that m f = 0 the spectral function have a three-peak structure at T ~ m b. –m f depress the peak at  < 0 Pole structure –there are poles corresponding the peaks in  –the residues at the three poles approximately satisfy the sum rule –pole approx. to  is quite valid at T ~ m b so that the quasi-particle picture also good. –there are structural change of the quasi-particle picture –The behaviors can be understood by level mixing

Future work effect on the observable –Dilepton production rate (W.I.P) finite chemical potential –C.E.P (T.C.P)

Back Up

Quark at high T available at  T , p, m f “plasmino” H.A.Weldon, PRD40(1989)2410 p << T p - k k k ~ T がループ積分に おいて支配的 Two dispersion relation A dispersion relation have minimum -plasmino Thermal mass : prop. to T Chiral symmetric mass (E. Braaten and R. D. Pisarski) ( First appear in V. V. Klimov, Yad. Fiz 33, 1734 (1981) ) ( ×C F ) Hard Thermal Approximation

The Spectral Function

The spectral function projection op. Deal with only positive number component cf : parity property となる  で Im  + (  ) が小さければピークがある

The spectral function Only a peak for free quark at T = 0 3-peak structure at T ~ m b 2 peak structure at higher T consistent with HTL app. m f = 0 Quark spectrum in Yukawa models was shown in Kitazawa et al, Prog.Theor.Phys.117, 103 (2007)

Under standing from the self-energy ( Kramers - Kronig relation ) Peaks in Im  →  heaves in Re  for * This Analysis in Ch. Lim. Still Shown by Kitazawa, et. al. ( M.Kitazawa, et.al. Phys.Lett. B633 (2006) 269 ) New peaks at higher temperature cf : “quasi”-disp. rel. T T Imag. Real

The spectral function for m f / m b = 0.1 suppression of the peak in the region  < 0 3-peak structure barely remain

The spectral function for m f / m b = 0.2

The spectral function for m f / m b = 0.3 The suppression of the peak in the negative energy region become strong

Mass lower the y-int. (⇔ free particle peak is at  ) The peak with negative energy require higher temp. Quasi Dispersion Relation : T T Imag. Real Under standing from the self-energy

The Pole Structure Of The Quark Propagator

Poles of the quark propagator Poles are found by solving The residue at pole which indicate the strength of the excitation If pole approximation is good Pole approximation of the spectral function A sum rule for the fermion spectral function

Pole Structure Of Propagators ( m f = 0 ) Poles of the retarded functions in the lower half plane z Real Imaginary - 2  T z: complex energy variable infinite #s of poles (A) (B)(C)

How the poles move pole (A) stay at the origin irrespective of T Imag. parts of the poles (B) and (C) become smaller as T is raised (A) (B) (C)

Breit-Wigner approximations T/m b = 0.5T/m b = 1.0 T/m b = 1.5 The pole approximation describe the spectral function except near the origin : the residues at many poles near the origin have negative real parts

The residues Residues have similar values at T ~ m b : consistent with 3-peak structure ! Sum rule is satisfied approximately

How the poles move (m f /m b =0.1) Pole (A) moves toward the origin as T is raised Pole (C) have larger imaginary part than pole (B) (A) (B) (C)

Breit-Wigner approximations The spectral function is well described by the three poles we picked up ! T/m b = 0.5T/m b = 1.0 T/m b = 1.5

The residues and a sum rule Residue at pole (A) decrease at high T Residue at pole (B) is larger than that for pole (C) at T ~ m b Sum rule is approximately satisfied

Structural change in the pole behavior m f / m b = 0.2 m f / m b = 0.3 The T -dependence of the poles qualitatively change (A) (B) (C) (A) (B) (C)

Residues It seems that behavior of poles A and B is exchanged. m f / m b = 0.2 m f / m b = 0.3 critical mass is m f / m b ~ 0.21

The behavior at high temperature Im z / Re z is small at high T m T of HTL well approximate the real part at high T ex) T/mb = 20.0 m T =gT/4  Q = m b phase space for decays vanish

The Level Mixing The Physical Origin Of Multi Peak Structures

Level Mixing ~ massless fermions coupled with a massless boson ~  + ( ,k) quark anti-q th hole quark | ( H.A.Weldon, PRD40(1989)2410 )    k)  k

Level Mixing ~ massless fermions coupled with a massive boson ~ quark anti-q hole quark mm mm |  k  + ( ,k)    k) Kitazawa et al, Prog.Theor.Phys.117, 103 (2007) M.Kitazawa, et.al. Phys.Lett. B633, 269 (2006)

Energies of the mixed levels (E f, k) (,0)(,0) (E b, k) (,0)(,0) (E f, k) 0 <  < |m b -m f | 0 >  > - |m b -m f | The energy of the state which mixed with the original (free) state  > = E b – E f (>0)  < = E f – E b (<0) E b = sqrt(m b 2 + k 2 ) E f = sqrt(m f 2 + k 2 ) In the discussions above, the momentum of the boson is set to zero. Here I consider general values of the absorbed/emitted boson.

M - = m b - m f >> << >> << Im  prop. to the decay rate This suggest that the mixing processes occur most often at two energy value →effectively the mixing b/w three states →three peak structure competition b/w 1)phase volume ∝ k 2 2)dist. func. n(k), f(k) suppression of the peak with negative energy

 k Intermediated states are thermally excited - at low T effect of level mixing is weak - graphs are schematic picture at enough high T so that level mixing become effective and pole (A) start to move  k the structural change from the aspect of level mixing Effective mixed level original level is pushed up in energy at high T original level is pushed down in energy at high T m f < m* m f > m* m f = 0,0.1,0.2m f = 0.3

Coupling with pseudo scalar boson m f / m b = 0.2 qualitatively the same the peak near the origin is enhanced critical mass for the pole structure becomes m PS * ~ 0.23

Subtracted Dispersion Relation Kramers-Kroenig Relation for f(x) Finiteness of Re  require | f(z)| to converge as z →  Else one should use Those are called once “subtracted” and twice “subtracted” dispersion relation respectively.

Explicit expression of T = 0 part Diverge !

Renormalization Of T = 0 Part We use twice subtracted disp. rel. for regularization of integral General complex function f(x) obey to the following relation : Even if above expression diverge, following expression sometimes converge. This expression is called “twice-subtracted” dispersion relation ( Dispersion Relation )

Renormalization Of T = 0 Part ( dbl sign : for p 0 > 0 upper, for p 0 < 0 lower ) Mass Shell Renormalization Mass Renorm. Wv. Fnc. Renorm. In terms of  Finite temperature part converge → disp. rel. without subtraction. ( dbl sign : for p 0 > 0 upper, for p 0 < 0 lower )

Im  and decay processes (I)(I) ( II ) ( IV ) (I)(I) ( II ) ( III ) ( IV ) External line have positive quark number ( III ) Landau Damping time

Allowed Energy Region For The Processes m f < m b m f > m b (I)(I) (I)(I) ( II ) ( III ) ( IV ) |m b -m f |-|m b -m f | (m b +m f ) -(m b +m f ) (II) 0 ( III ) Thermal excitation Landau damping processes -including thermally excited particles in the initial state

Im  and decay processes finite T ランダウ減衰 ボゾン質量が有限であることを反映して 2 ピーク

Im  のピークの位置と m f の比較 we use the minima in the imaginary parts of the self-energies for rough indication for effective energy of intermediate states m f / m b = 0.1m f / m b = 0.2m f / m b = 0.3 T/m b = 0.5 at which T=0 pole start to move notably minima exist at  < m f minima exist at  > m f

擬スカラーの場合: 自己エネルギーからの解釈 散乱の行列要素が変わるのが原因 正エネルギー領域にお ける実部のうねりがス カラーの場合よりも大 きくなり下位の位置に 変化