1 The XCBC-XOR, XECB-XOR and XECB-MAC Modes Virgil D. GligorPompiliu Donescu VDG Inc 6009 Brookside Drive Chevy Chase, Maryland {gligor, August 24, 2001
2 Outline 1. Security Claims 2. Operational Claims 3. Examples: XCBC-XOR, XECB-XOR, XECB-MAC modes 4. Conclusions
3 1. Security Claims for Authenticated Encryption 1. Security Claim = a security notion supported by a mode or scheme of encryption 2. Secrecy Notion = 3. Integrity (Authenticity) Notion = < Existential Forgery protection, (adaptive) Chosen Plaintext Attacks>
4 2. Operational Claims for Modes of Encryption Operational Notion = Operational Goals: cost-performance, simplicity, usability cost-performance: power consumption speed (no. of block-cipher invocations, latency) implementation cost (e.g., hardware “real-estate’’) simplicity single key specifications (e.g., simple operations) same basic structure for - authenticated encryption - ciphertext authentication (two-pass, two keys) - plaintext authentication (MAC) usability in different environments various keying-state protection mechanisms needed availability of random number generators, error recovery (ECC, no recovery vs. partial recovery)
5 Operational Characteristics of Modes State: stateless, stateful-sender, stateful Degree of parallelism none (sequential) interleaved (known/negotiated no. of processing units for parallel operation) architecture-independent independent of no. of processing units same overhead for parallel, pipelined or sequential operation out-of-order processing, incremental Error recovery interleaving provides some support on a per-segment basis Separation of Confidentiality and Integrity protection (e.g., two-pass, two keys) Padding avoid added block-cipher invocation if message length is a multiple no. of blocks. avoid added latency (1 block-cipher invocation) caused by “ciphertext stealing”
6 Examples of State Characteristics of a Mode Stateless - needs good, secure source of randomness per message - no state to maintain across messages (other than key) - Execution: n+3 block cipher invocations; - Latency: 2 block cipher invocations in parallel execution Stateful Sender - state (e.g., message counter) maintained by sender - protection of sender state (e.g., counter integrity) across messages - Execution: n+2 block cipher invocations - Latency: 2 block cipher invocations in parallel execution Stateful - state : shared variables (other than key) - protection of state secrecy, integrity across messages - more susceptible to failures, intrusion - Execution: n+1 block cipher invocations- - Latency: 1 block cipher invocation in parallel execution robustness increase speed increase
7 x1x1 x2x2 x3x3 x4x4. K x =. E1E1 E2E2 E3E3 E4E4. E5E5... y2y2 y3y3 y4y4 y = y1y1 y5y5. MDC(x)... x5x5 IND-CPA Secure Mode z1z1 z2z2 z3z3 z4z4 z5z5 Sender Initialization FKFK... Receiver Initialization 3. Authenticated Encryption Modes op 1. IND-CPA secure mode: processes block x i, 1 i n+1, and inputs result to block cipher F K 2. “op” has an inverse “op -1 ” 3. Elements E i are unpredictable, 1 i n+1, and E p i op -1 E q j are unpredictable, where (p, i) (q, j) messages p,q are encrypted with same key K. Unpredictable vector z 0
8 z1z1 z2z2 z3z3 z4z4 K’ z =.. IND-CPA Secure Mode w1w1 w2w2 w3w3 w4w4 Sender Initialization FKFK... Receiver Initialization Motivation for Confidentiality-Centric View w z 1 z 2 z 3 z 4 Observation (1998): secure message authentication modes (in chosen message attacks) can be obtained from certain IND-CPA secure modes Implication: same mode structure can be used for (1) authenticated encryption (one pass, single cryptographic primitive) (2) ciphertext authentication (two-pass, single cryptographic primitive, two-key separation of confidentiality and integrity) (3) plaintext authentication (MAC) Implementation: with only little added control logic we get (1), (2) and (3)
9. K Random-number generator r0r0. y0y0 FKFK. IND-CPA mode stateless mode r0r0 ctr ctr’ = ctr+1 FKFK K... IND-CPA mode E i = i x r 0 ctr stateful-sender mode K. R*, R E i = ctr x R* + i x R R*, R E i = ctr x R* + i x R ctr ctr’ = ctr+1 ctr. stateful mode Examples of Mode Initialization 1 i n+1 E* n+1 = ctr x R* sender receiver R*, R = random, uniformly distributed, independent l -bit variables E i = i x r 0
10 x 1 x 2 z 1 y 2 x 3 x 4 y 3 y 4 x = y = y 1 z 2 E 1 z 3 z 4 CBC Encrypt with F K E 2 E 3 E 4.. z 5 E 5.. y MDC(x) / z 0 z 0 F K F K K Random-number generator. y 0. r 0. r 0 +c. Stateless XCBC-XOR op MDC = , E i = r 0 x i, op = +, and others; Padding = 10* pattern, use z 0 if padding is needed, z 0 if padding is not needed Stateful-Sender (e.g., r 0 = F K (ctr)) and Stateful (e.g., per-key shared VI, z 0 = r 0 +VI) XCBC-XOR are also defined Stateless Performance: > n+3 blk. cipher invocations, > 2 blk. cipher invocations latency Stateful-Sender Performance: n+3 blk. cipher invocations, 2 blk. cipher invocations latency Stateful Performance: n+2 blk. cipher invocations, 2 blk. cipher invocations latency
11 x1x1 x2x2 x3x3 x4x4 E1E1 K E2E2 E3E3 E4E4. E*5E*5.. x =. FKFK FKFK FKFK FKFK FKFK K K K K K. E1E1 E2E2 E3E3 E4E4. E5E5... y2y2 y3y3 y4y4 y = y1y1 y5y5. MDC(x)... x5x5 z1z1 z2z2 z3z3 z4z4 z5z5 v1v1 v2v2 v3v3 v4v4 v5v5 ctr ctr x R * ctr. ctr’ = ctr+1 R*R* R. op 1 i n+1 E i = ctr x R* + i x R E* n+1 = ctr x Z* Stateful XECB-XOR Performance Optimized - n+1 block-cipher invocations - 1 block-cipher latency Padding - Z* = R* if unpadded - Z* = R* if padded - padding pattern: 10* IND-CPA Secure Mode
12 x1x1 x2x2 x3x3 x4x4 E1E1. K E2E2 E3E3 E4E4. E*5E*5.. x =. Random-number generator r0r0 FKFK FKFK FKFK FKFK FKFK K K K K K. E1E1 E2E2 E3E3 E4E4. E5E5... y2y2 y3y3 y4y4 y = y1y1 y5y5 y0y0 FKFK.. MDC(x)... x5x5 z1z1 z2z2 z3z3 z4z4 z5z5 v1v1 v2v2 v3v3 v4v4 v5v5 op Stateless XECB-XOR MDC = , E i = r 0 x i, E* n+1 = (n+2) x Z*, op = +, and others; Z* = r 0 or r 0 depending upon padding IND-CPA Secure Mode Stateless Performance: > n+2 blk. cipher invocations, > 2 blk. cipher invocations latency
13 x1x1 x2x2 x3x3 x4x4 E1E1 K E2E2 E3E3 E4E4. E*5E*5.. x =. r0r0 FKFK FKFK FKFK FKFK FKFK K K K K K. E1E1 E2E2 E3E3 E4E4. E5E5... y2y2 y3y3 y4y4 y = y1y1 y5y5.. MDC(x)... x5x5 z1z1 z2z2 z3z3 z4z4 z5z5 v1v1 v2v2 v3v3 v4v4 v5v5 ctr ctr’ = ctr+1 FKFK ctr op Stateful-Sender XECB-XOR MDC = , E i = r 0 x i, E* n+1 = (n+2) x Z*, op = +, and others; Z* = r 0 or r 0 depending upon padding IND-CPA Secure Mode Stateful-Sender Performance: n+2 blk. cipher invocations, 2 blk. cipher invocations latency
14 x1x1 x2x2 x3x3 x4x4 y1y1 y2y2 y3y3 y4y4 K y’ 5 x5x5 x6x6 x7x7 x8x8 y5y5 y6y6 y7y7 y8y8 K y’ 9 x = x9x9 x 10 x 11 x 12 y9y9 y 10 y 11 y 12 K y’ 13 r 01 r 02 r 03 x1x1 x2x2 x3x3 x4x4 x5x5 x6x6 x7x7 x8x8 x9x9 x 10 x 11 x 12 Plaintext Segment 1 Plaintext Segment 1 Encryption Plaintext Segment 2 Encryption Plaintext Segment 3 Encryption ctr FKFK K. Plaintext Segment 2 Plaintext Segment 3 Ciphertext Segment 1 Ciphertext Segment 2 Ciphertext Segment 3 FKFK K FKFK K ctr ctr+1 ctr+2 ctr y1y1 y2y2 y3y3 y4y4 y’ 5 y5y5 y6y6 y7y7 y8y8 y’ 9 y9y9 y 10 y 11 y 12 y’ 13 y = ctr’ = ctr+3 SEGMENTED Stateful-SenderMode* (*) per-segment error handling => error recovery
15 x 1 x 2 x 3 x 4 w K.. x = R F K F K F K F K K K K K x 1 x 2 x 3 x 4 ctr E 3 E2E2 E1E1 R* ctr ctr’ =ctr+1 R* xctr op Stateful XECB-MAC 1 i n E i = ctr x Z* + i x R, Performance Optimized - n+1 block-cipher invocations - 1 block-cipher latency Padding - Z* = R* if unpadded - Z* = R* if padded - padding pattern: 10* E4E4 IND-CPA Secure Mode
16 Cost-performance: stateful XECB-XOR and XECB-MAC are optimal (minimum block cipher invocations and latency); XECB-XOR and XECB-MAC modes exhibit architecture-independent parallelism; XCBC-XOR modes are simple extensions of the standard CBC mode Simplicity: same basic structure for - authenticated encryption - ciphertext authentication (two-pass, two keys) - plaintext authentication (MAC) Usability: stateless, stateful-sender, stateful modes for different environments. Security: good bounds. 4. Conclusions