Gamma–Ray Bursts, Massive Cores and Particle Physics Remo Ruffini Dipartimento di Fisica – Università di Roma “La Sapienza” ICRANet – Pescara ICRANet – Nice Sofia Antipolis Taipei, May 28 th 2008
Otto Hahn and Lise Meitner: the fission of Uranium
Heisenberg – Euler – Schwinger E c = m 2 c 3 /( e) Z c ~ 1
V.S. Popov V.S. Popov, Yad. Fiz. 12 (1970) 429 [Sov. J. Nucl. Phys. 12 (1971) 235]. V.S. Popov, Zhetf Pis. Red. 11 (1970) 254 [JETP Lett. 11 (1970) 162]. V.S. Popov, Zh. Eksp. Theor Fiz. 59 (1970) 965 [Sov. Phys. JEPT 32 (1971) 526]. V.S. Popov, Zh. Eksp. Theor Fiz. 60 (1971) 1228 [Sov. Phys. JEPT 33 (1971) 665]. Y.B. Zel'dovich, V.S. Popov, Sov. Phys. USPEKHI 14 (1972) 673. M.S. Marinov, V.S. Popov, Pis'ma v ZhETF 17 (1973) 511 [JETP Lett. 17, (1973) 368 ]. S.S. Gershtein, V.S. Popov, Lett. Nuovo Cim. 6, (1973). V.S. Popov, ZhETF 18 (1973) 53 [ZhETF 65 (1973) 35]. V.S. Popov, Yad. Fiz. 64, (2001) 421 [Phys. Atomic Nuclei, 64 (2001) 367]. V.S. Popov, Yad. Fiz. 14 (1971) 458 [Sov. J. Nucl. Phys. 14 (1972) 257]. A.B. Migdal, A.M. Peremolov, V.S. Popov, Yad. Fis. 14 (1971) 874 [Sov. J. Nucl. Phys. 14 (1972) 488]. A.M. Peremolov, V.S. Popov, Zh. Eksp. Teor. Fiz. 61 (1971) 1743 [Sov. Phys. JETP 34 (1972) 928]. Z c > 173
W. Greiner B. M ü ller, W. Greiner, Z. Naturforsch 31a (1976) 1. J.S. Greening, W. Greiner, Physics Today, August J. Reinhardt, W. Greiner, Rep. Prog. Phys. 40 (1977) 219. B. M ü ller, J. Rafelski, W. Greiner, Z. Phys. 257 (1972) 62; B. M ü ller, J. Rafelski, W. Greiner, Z. Phys. 257 (1972) 183. J. Rafelski, B. M ü ller, W. Greiner, Phys. Lett. B47 (1973) 5. K. Rumrich, G. Soff, W. Greiner, Phys. Rev A47 (1993) 215. J. Rafelski, B. M ü ller, W. Greiner, Z. Phys. A285 (1978) 49. G. Soff, B. M ü ller, W. Greiner, Phys. Rev. Lett. 40 (1978) 540. J. Reinhardt, B. M ü ller, W. Greiner, Phys. Rev. A24 (1981) 103. B. M ü ller, R. Kent-Smith, W.~ reiner, Phys. Lett. B49 (1974) 219. B. M ü ller, J. Reinhardt, W. Greiner, G. Soff, Z. Phys. A311 (1983) 151. J. Reinhardt, U. M ü ller, B. M ü ller, W. Greiner, Z. Phys. A303 (1981) 173. P. G ä rtner, J. Reinhardt, B. M ü ller, W. Greiner, Phys. Lett. B95 (1980) 181. G. Soff, P. Schl ü ter, B. M ü ller, W. Greiner, Phys. Rev. Lett. 48 (1982) W. Greiner, J. Reinhardt, “Quantum Electrodynamics”, Springer-Verlag, Berlin, O. Graf, J. Reinhardt, B. M ü ller, W. Greiner, G. Soff, Phys. Rev. Lett. 61 (1981) W. Greiner, J. Reinhardt, in Quantum Aspects of Beam Physics, P. Chen Ed., World Scientific K. Rumrich, K. Momberger, G. Soff, W. Greiner, N. Gr ü n, W. Scheid, Phys. Rev. Lett. 66 (1991) T. de Reus, U. M ü ller, J. Reinhardt, P. Schl ü ter, K.H. Wietschorke, B. M ü ller, W. Greiner, G. Soff, in Proc. of NASI Conference, Lahnstein/Rhein, W. Greiner Ed., Plenum, New York, Z c > 173
Thermonuclear energy of the Sun J. Perrin & A. Eddington (1920) G. Gamow & F. Houtermans (1928) R. Atkinson & F. Houtermans (1929) H. Bethe (1939)
Pulsars and Neutron stars rotational energy Chinese, Japanese, Korean astronomers (1054 A.D.) R. Oppenheimer & R. Volkoff (1939) J. Bell & T. Hewish (1967) A. Finzi & R. Wolf (1968)
Introducing the “Black Hole”
Gravitational accretion energy vs. nuclear binding energy Nuclear Binding Energy per Nucleon FUSION FISSION
The “Uhuru” satellite
Accretion Energy. The identification of the first black hole: Cygnus X-1 = erg/s = 10 4 L = 0.01(dm/dt) acc c 2 Absence of pulsation due to the uniqueness of Kerr- Newman metric M > 3.2 M Leach & Ruffini, 1973
Varenna, 1975
Giacconi, Sweden (2002)
The Kerr metric
The “Blackholic” energy: E 2 = (M ir c 2 + Q 2 /2 ) 2 + (Lc/ ) 2 + p 2 Christodoulou, Ruffini, 1971 Up to 29% rotational energy. Up to 50% electromagnetic energy.
Zel’dovich and Pontecorvo
The H-Bomb
The blackholic energy and the Quantum
Short and Long GRBs seconds 10 3 counts/s seconds 10 3 counts/s
The Long Story of the Cosmic Gamma Ray Bursts. E = ergs!
What are short-GRBs? What are long-GRBs? GRB What are GRB afterglows? GRB GRB
- “Relative Space Time Transformations” (RSTT) paradigm (Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, 2001) - “Interpretation of the Burst Structure” (IBS) paradigm (Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L113, 2001) - “GRB-supernova Time Sequence” (GSTS) paradigm (Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L117, 2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Summary of our Model (tested on GRB ) E dya = 4.8x10 53 ergB = 3.0x10 -3
Intensity Arrival time at the detector (seconds) BATSE observations R-XTE and Chandra Observations Proper-GRB Afterglow
Our GRB – SN connection Black hole formation. Dyadosphere GRB Supernova Two different systems Induced gravitational collapse Della Valle, Mazzali, Nomoto
NS SN Induced gravitational collapse (2006) C/O NSFe NS SN BH SN PEM Pulse
GRB
GRB : BAT + XRT Light curve Afterglow P-GRB (not shown) “Prompt Emission” (afterglow peak) Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)
GRB : BAT Light curve (15-25 keV) Afterglow Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)
GRB : BAT Light curve (25-50 keV) Afterglow Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)
GRB050315: BAT Light curve ( keV) Afterglow Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)
GRB : BAT Light curve ( keV) Afterglow P-GRB Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)
GRB : Instantaneous spectra Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)
The duration of long GRBs The Kouveliotou – Tavani classification of short and long bursts. The Amati relation. The Ghirlanda relation. Lowering the threshold, we need to reconsider:
What are short-GRBs? What are long-GRBs? GRB What are GRB afterglows? GRB GRB Short-GRBs are P-GRBs! Long-GRBs are not bursts: they are E-APEs! GRB afterglows are the fading part of E-APEs!
Nuclear density core N ~ (m planck /m n ) 3 Ruffini, Rotondo, Xue, Int. J. Mod. Phys. D, in press (2007)
Solution of the Thomas – Fermi Equation
Electron penetration in the nuclear core
Critical electric field near the core surface
The Dyadosphere +Q-Q e + e - plasma r = r ds – r + Preparata, Ruffini, Xue, A&A, 338, L87, (1998) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)
Concentrations of pairs and photons with and inverse triple collisions Concentrations of pairs and photons with and without inverse triple collisions Ruffini, Aksenov, Vereshchagin, submitted (2007)
Pair creation feedback Initial conditions: n 0 = 0 = p 0 = 0, E 0 = 10 E c (left column), E 0 = 0.15 E c (right column). Plots: Elecric field strength E(t), e + number density n(t), e + velocity v(t), e + Lorentz factor (t). D Ruffini, Vereshchagin, Xue, submitted (2007)
The Dyado-torus C. Cherubini, A. Geralico, J. Rueda, R. Ruffini (2007)
Rick Hanni
Discussion Unruh - Wheeler
Bini - Geralico - Ruffini
The electric Meissner effect