Gamma–Ray Bursts, Massive Cores and Particle Physics Remo Ruffini Dipartimento di Fisica – Università di Roma “La Sapienza” ICRANet – Pescara ICRANet –

Slides:



Advertisements
Similar presentations
GRB : A step in the proof of the uniqueness of the overall GRB structure R. Ruffini, M.G. Bernardini, C.L. Bianco, L. Caito, P. Chardonnet, F. Fraschetti,
Advertisements

Stellar Structure Section 6: Introduction to Stellar Evolution Lecture 18 – Mass-radius relation for black dwarfs Chandrasekhar limiting mass Comparison.
GRB : a canonical fake short burst L. Caito, M.G. Bernardini, C.L. Bianco, M.G. Dainotti, R. Guida, R. Ruffini. 3 rd Stueckelberg Workshop July 8–18,
1 Stellar Remnants White Dwarfs, Neutron Stars & Black Holes These objects normally emit light only due to their very high temperatures. Normally nuclear.
Who are the usual suspects? Type I Supernovae No fusion in white dwarf, star is supported only by electron degeneracy pressure. This sets max mass for.
End States Read Your Textbook: Foundations of Astronomy
Gamma-Ray Bursts & High Energy Astrophysics Kunihito Ioka (KEK) 井岡 邦仁.
Supernovae Supernova Remnants Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear.
Neutron Stars and Black Holes
Neutrinos as probes of ultra-high energy astrophysical phenomena Jenni Adams, University of Canterbury, New Zealand.
Cosmology The Life-Histories of Stars. Nuclear Fusion  Stars produce light and heat because of the processes of nuclear fusion which take place within.
The Supernova, the Black Hole and the Gamma Ray Burst Phil Plait, beaming proudly July 17, 2002.
Electron-positron pair productions in gravitational collapses In collaboration with Wen-Biao Han, & Remo Ruffini ICRANet & Physics Department, University.
Life and Evolution of a Massive Star M ~ 25 M Sun.
1. White Dwarf If initial star mass < 8 M Sun or so. (and remember: Maximum WD mass is 1.4 M Sun, radius is about that of the Earth) 2. Neutron Star If.
This set of slides This set of slides covers the supernova of white dwarf stars and the late-in-life evolution and death of massive stars, stars > 8 solar.
G.E. Romero Instituto Aregntino de Radioastronomía (IAR), Facultad de Ciencias Astronómicas y Geofísicas, University of La Plata, Argentina.
A burst of new ideas Nature Vol /28 December 2006 徐佩君 HEAR group meeting 12/
Gamma Ray Bursts and LIGO Emelie Harstad University of Oregon HEP Group Meeting Aug 6, 2007.
Gamma Ray Bursts A High Energy Mystery By Tessa Vernstrom Ast 4001, Fall 2007 A High Energy Mystery By Tessa Vernstrom Ast 4001, Fall 2007.
Neutron Stars and Black Holes Chapter 14. Formation of Neutron Stars Compact objects more massive than the Chandrasekhar Limit (1.4 M sun ) collapse beyond.
Modelling the GRB light curves using a shock wave model
July 2004, Erice1 The performance of MAGIC Telescope for observation of Gamma Ray Bursts Satoko Mizobuchi for MAGIC collaboration Max-Planck-Institute.
Tycho’s SNR SNR G "To make an apple pie from scratch, you must first invent the universe." ~Carl Sagan.
Survey of the Universe Tom Burbine
Gamma-Ray Bursts and Supernovae Tsinghua Transient Workshop 8 Nov 2012 Elena Pian INAF-Trieste Astronomical Observatory, Italy & Scuola Normale Superiore.
Supernovae and Gamma-Ray Bursts. Summary of Post-Main-Sequence Evolution of Stars M > 8 M sun M < 4 M sun Subsequent ignition of nuclear reactions involving.
1 Stellar Remnants White Dwarfs, Neutron Stars & Black Holes These objects normally emit light only due to their very high temperatures. Normally nuclear.
Swift Annapolis GRB Conference Prompt Emission Properties of Swift GRBs T. Sakamoto (CRESST/UMBC/GSFC) On behalf of Swift/BAT team.
The Energy in our Universe Dr. Darrel Smith Department of Physics.
Gamma-Ray Bursts observed with INTEGRAL and XMM- Newton Sinead McGlynn School of Physics University College Dublin.
Plasma universe Fluctuations in the primordial plasma are observed in the cosmic microwave background ESA Planck satellite to be launched in 2007 Data.
She-Sheng XUE ICRANet, Pescara, Italy how the gravitational energy transfers to the electromagnetic energy for Gamma-Ray-Bursts. 1) Electron-positron production,
Note that the following lectures include animations and PowerPoint effects such as fly-ins and transitions that require you to be in PowerPoint's Slide.
Dec. 6, Review: >8Msun stars become Type II SNe As nuclear burning proceeds to, finally, burning Silicon (Si) into iron (Fe), catastrophe looms.
Gamma-Ray Bursts observed by XMM-Newton Paul O’Brien X-ray and Observational Astronomy Group, University of Leicester Collaborators:- James Reeves, Darach.
1 Determination of the equation of state of the universe using 0.1Hz Gravitational Wave Antenna Takashi Nakamura and Ryuichi Takahashi Dept. Phys. Kyoto.
Neutrinos and Supernovae Bob Bingham STFC – Centre for Fundamental Physics (CfFP) Rutherford Appleton Laboratory. SUPA– University of Strathclyde.
A Tidal Disruption model for gamma-ray burst of GRB YE LU National Astronomical Observatories, Chinese Academy of Sciences June 22-27, 2008 Nanjing.
Gamma-Ray Bursts Energy problem and beaming * Mergers versus collapsars GRB host galaxies and locations within galaxy Supernova connection Fireball model.
1 High Energy Radiation from Black Holes Gamma Rays, Cosmic Rays, and Neutrinos Chuck Dermer Naval Research Laboratory Govind.
Is GRB050509b a genuine short? Gustavo de Barros, Maria Grazia Bernardini, Carlo Luciano bianco, Roberto Guida, Remo Ruffini.
Stochastic Wake Field particle acceleration in GRB G. Barbiellini (1), F. Longo (1), N.Omodei (2), P.Tommasini (3), D.Giulietti (3), A.Celotti (4), M.Tavani.
Circumstellar interaction of supernovae and gamma-ray bursts Circumstellar interaction of supernovae and gamma-ray bursts Poonam Chandra National Radio.
Black Holes Accretion Disks X-Ray/Gamma-Ray Binaries.
1 Chang-Hwan Spin of Stellar Mass Black Holes: Hypernova and BH Spin Correlation in Soft X-ray BH Binaries.
9 May 2013: New Moon Image: May 2012 annular eclipse, Monument Valley AZ.
Gamma-Ray Bursts. Short (sub-second to minutes) flashes of gamma- rays, for ~ 30 years not associated with any counterparts in other wavelength bands.
MICHAEL ROTONDO* R. RUFFINI*°^ S-S. XUE*° *DEPARTMENT OF PHYSICS AND ICRA, UNIVERSITY OF ROME “SAPIENZA” °ICRANET, PESCARA ^ICRANET,UNIVERSITY OF NICE.
GRB and GRB A the flares and the spectral lag M.G. Dainotti M.G.Bernardini, C.L.Bianco, L. Caito, R. Guida, R.Ruffini.
Copyright © 2010 Pearson Education, Inc. Clicker Questions Chapter 13 Neutron Stars and Black Holes.
Stochastic wake field particle acceleration in Gamma-Ray Bursts Barbiellini G., Longo F. (1), Omodei N. (2), Giulietti D., Tommassini P. (3), Celotti A.
High Energy Observational Astrophysics. 1 Processes that emit X-rays and Gamma rays.
Classification of Gamma-Ray Bursts: an observational review Paolo D’Avanzo INAF – Osservatorio Astronomico di Brera.
Gamma-ray bursts Tomasz Bulik CAM K, Warsaw. Outline ● Observations: prompt gamma emission, afterglows ● Theoretical modeling ● Current challenges in.
Gamma-Ray Bursts Please press “1” to test your transmitter.
She-Sheng XUE ICRANet, Pescara, Italy How the gravitational energy transfers to the electromagnetic energy for Gamma-Ray-Bursts. 1)Electron-positron production,
Analogy between laser plasma acceleration and GRB
Middleweight Stars 4-12 solar masses.
Unit 11 - Nuclear Chemistry
Neutron Stars and Black Holes
Le spectre des GRBs dans le modèle EMBH
Short Gamma Ray Bursts Curtis DeWitt.
Chapter 13 Nuclear Chemistry.
Neutrinos as probes of ultra-high energy astrophysical phenomena
Unit 11 - Nuclear Chemistry
Evolution of the Solar System
GRB-Supernova observations: State of the art
Center for Computational Physics
Stochastic Wake Field particle acceleration in GRB
Presentation transcript:

Gamma–Ray Bursts, Massive Cores and Particle Physics Remo Ruffini Dipartimento di Fisica – Università di Roma “La Sapienza” ICRANet – Pescara ICRANet – Nice Sofia Antipolis Taipei, May 28 th 2008

Otto Hahn and Lise Meitner: the fission of Uranium

Heisenberg – Euler – Schwinger E c = m 2 c 3 /(  e) Z c  ~ 1

V.S. Popov V.S. Popov, Yad. Fiz. 12 (1970) 429 [Sov. J. Nucl. Phys. 12 (1971) 235]. V.S. Popov, Zhetf Pis. Red. 11 (1970) 254 [JETP Lett. 11 (1970) 162]. V.S. Popov, Zh. Eksp. Theor Fiz. 59 (1970) 965 [Sov. Phys. JEPT 32 (1971) 526]. V.S. Popov, Zh. Eksp. Theor Fiz. 60 (1971) 1228 [Sov. Phys. JEPT 33 (1971) 665]. Y.B. Zel'dovich, V.S. Popov, Sov. Phys. USPEKHI 14 (1972) 673. M.S. Marinov, V.S. Popov, Pis'ma v ZhETF 17 (1973) 511 [JETP Lett. 17, (1973) 368 ]. S.S. Gershtein, V.S. Popov, Lett. Nuovo Cim. 6, (1973). V.S. Popov, ZhETF 18 (1973) 53 [ZhETF 65 (1973) 35]. V.S. Popov, Yad. Fiz. 64, (2001) 421 [Phys. Atomic Nuclei, 64 (2001) 367]. V.S. Popov, Yad. Fiz. 14 (1971) 458 [Sov. J. Nucl. Phys. 14 (1972) 257]. A.B. Migdal, A.M. Peremolov, V.S. Popov, Yad. Fis. 14 (1971) 874 [Sov. J. Nucl. Phys. 14 (1972) 488]. A.M. Peremolov, V.S. Popov, Zh. Eksp. Teor. Fiz. 61 (1971) 1743 [Sov. Phys. JETP 34 (1972) 928]. Z c > 173

W. Greiner B. M ü ller, W. Greiner, Z. Naturforsch 31a (1976) 1. J.S. Greening, W. Greiner, Physics Today, August J. Reinhardt, W. Greiner, Rep. Prog. Phys. 40 (1977) 219. B. M ü ller, J. Rafelski, W. Greiner, Z. Phys. 257 (1972) 62; B. M ü ller, J. Rafelski, W. Greiner, Z. Phys. 257 (1972) 183. J. Rafelski, B. M ü ller, W. Greiner, Phys. Lett. B47 (1973) 5. K. Rumrich, G. Soff, W. Greiner, Phys. Rev A47 (1993) 215. J. Rafelski, B. M ü ller, W. Greiner, Z. Phys. A285 (1978) 49. G. Soff, B. M ü ller, W. Greiner, Phys. Rev. Lett. 40 (1978) 540. J. Reinhardt, B. M ü ller, W. Greiner, Phys. Rev. A24 (1981) 103. B. M ü ller, R. Kent-Smith, W.~ reiner, Phys. Lett. B49 (1974) 219. B. M ü ller, J. Reinhardt, W. Greiner, G. Soff, Z. Phys. A311 (1983) 151. J. Reinhardt, U. M ü ller, B. M ü ller, W. Greiner, Z. Phys. A303 (1981) 173. P. G ä rtner, J. Reinhardt, B. M ü ller, W. Greiner, Phys. Lett. B95 (1980) 181. G. Soff, P. Schl ü ter, B. M ü ller, W. Greiner, Phys. Rev. Lett. 48 (1982) W. Greiner, J. Reinhardt, “Quantum Electrodynamics”, Springer-Verlag, Berlin, O. Graf, J. Reinhardt, B. M ü ller, W. Greiner, G. Soff, Phys. Rev. Lett. 61 (1981) W. Greiner, J. Reinhardt, in Quantum Aspects of Beam Physics, P. Chen Ed., World Scientific K. Rumrich, K. Momberger, G. Soff, W. Greiner, N. Gr ü n, W. Scheid, Phys. Rev. Lett. 66 (1991) T. de Reus, U. M ü ller, J. Reinhardt, P. Schl ü ter, K.H. Wietschorke, B. M ü ller, W. Greiner, G. Soff, in Proc. of NASI Conference, Lahnstein/Rhein, W. Greiner Ed., Plenum, New York, Z c > 173

Thermonuclear energy of the Sun J. Perrin & A. Eddington (1920) G. Gamow & F. Houtermans (1928) R. Atkinson & F. Houtermans (1929) H. Bethe (1939)

Pulsars and Neutron stars rotational energy Chinese, Japanese, Korean astronomers (1054 A.D.) R. Oppenheimer & R. Volkoff (1939) J. Bell & T. Hewish (1967) A. Finzi & R. Wolf (1968)

Introducing the “Black Hole”

Gravitational accretion energy vs. nuclear binding energy Nuclear Binding Energy per Nucleon FUSION FISSION

The “Uhuru” satellite

Accretion Energy. The identification of the first black hole: Cygnus X-1  = erg/s = 10 4 L  = 0.01(dm/dt) acc c 2 Absence of pulsation due to the uniqueness of Kerr- Newman metric M > 3.2 M  Leach & Ruffini, 1973

Varenna, 1975

Giacconi, Sweden (2002)

The Kerr metric

The “Blackholic” energy: E 2 = (M ir c 2 + Q 2 /2  ) 2 + (Lc/  ) 2 + p 2 Christodoulou, Ruffini, 1971 Up to 29% rotational energy. Up to 50% electromagnetic energy.

Zel’dovich and Pontecorvo

The H-Bomb

The blackholic energy and the Quantum

Short and Long GRBs seconds 10 3 counts/s seconds 10 3 counts/s

The Long Story of the Cosmic Gamma Ray Bursts. E = ergs!

What are short-GRBs? What are long-GRBs? GRB What are GRB afterglows? GRB GRB

- “Relative Space Time Transformations” (RSTT) paradigm (Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L107, 2001) - “Interpretation of the Burst Structure” (IBS) paradigm (Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L113, 2001) - “GRB-supernova Time Sequence” (GSTS) paradigm (Ruffini, Bianco, Chardonnet, Fraschetti, Xue, ApJ, 555, L117, 2001) Ruffini, Bianco, Chardonnet, Fraschetti, Xue, Int. Journ. Mod. Phys. D, 12, 173, (2003) Summary of our Model (tested on GRB ) E dya = 4.8x10 53 ergB = 3.0x10 -3

Intensity Arrival time at the detector (seconds) BATSE observations R-XTE and Chandra Observations Proper-GRB Afterglow

Our GRB – SN connection Black hole formation. Dyadosphere GRB Supernova Two different systems Induced gravitational collapse Della Valle, Mazzali, Nomoto

NS SN Induced gravitational collapse (2006) C/O NSFe NS SN BH SN PEM Pulse

GRB

GRB : BAT + XRT Light curve Afterglow P-GRB (not shown) “Prompt Emission” (afterglow peak) Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)

GRB : BAT Light curve (15-25 keV) Afterglow Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)

GRB : BAT Light curve (25-50 keV) Afterglow Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)

GRB050315: BAT Light curve ( keV) Afterglow Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)

GRB : BAT Light curve ( keV) Afterglow P-GRB Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)

GRB : Instantaneous spectra Ruffini, Bernardini, Bianco, Chardonnet, Fraschetti, Guida, Xue, ApJ, 645, L109, (2006)

The duration of long GRBs The Kouveliotou – Tavani classification of short and long bursts. The Amati relation. The Ghirlanda relation. Lowering the threshold, we need to reconsider:

What are short-GRBs? What are long-GRBs? GRB What are GRB afterglows? GRB GRB Short-GRBs are P-GRBs! Long-GRBs are not bursts: they are E-APEs! GRB afterglows are the fading part of E-APEs!

Nuclear density core N ~ (m planck /m n ) 3 Ruffini, Rotondo, Xue, Int. J. Mod. Phys. D, in press (2007)

Solution of the Thomas – Fermi Equation

Electron penetration in the nuclear core

Critical electric field near the core surface

The Dyadosphere +Q-Q e + e - plasma  r = r ds – r + Preparata, Ruffini, Xue, A&A, 338, L87, (1998) Ruffini, Bianco, Chardonnet, Fraschetti, Vitagliano, Xue, “Cosmology and Gravitation”, AIP, (2003)

Concentrations of pairs and photons with and inverse triple collisions Concentrations of pairs and photons with and without inverse triple collisions Ruffini, Aksenov, Vereshchagin, submitted (2007)

Pair creation feedback Initial conditions: n 0 =  0 = p 0 = 0, E 0 = 10 E c (left column), E 0 = 0.15 E c (right column). Plots: Elecric field strength E(t), e + number density n(t), e + velocity v(t), e + Lorentz factor  (t). D Ruffini, Vereshchagin, Xue, submitted (2007)

The Dyado-torus C. Cherubini, A. Geralico, J. Rueda, R. Ruffini (2007)

Rick Hanni

Discussion Unruh - Wheeler

Bini - Geralico - Ruffini

The electric Meissner effect