Energy Flow & Food Webs Left: Image from Wikimedia Commons of one of the earliest known depictions of a food web, by Victor Summerhayes & Charles Elton (1923) for Bear Island, Norway Right: Provenance of “A simplified food web for Northwest Atlantic” unknown
Links Flow of material (including energy-rich molecules) Nodes Taxonomic or functional categories Paine, R. T. (1966) Am. Nat. – Food webs are the “ecologically flexible scaffolding around which communities are assembled and structured” Energy flows through the trophic levels of ecosystems Food Webs
Energy flows through the trophic levels of ecosystems Food Webs Cain, Bowman & Hacker (2014), Fig. 21.3
“Green” or living food web “Brown” or detrital food web 1 Producers 1 Consumers 2 Consumers 1 Consumers 2 Consumers Trophic levels within a simple food chain; donor levels supply energy or nutrients to recipient levels Another perspective: Green & Brown Food Webs Food Webs Cain, Bowman & Hacker (2014), Fig. 21.3
Cain, Bowman & Hacker (2014), Fig. 21.4, after Cebrian & Lartigue (2004) Energy Flow Through Food Webs In most ecosystems, most NPP becomes detritus without passing through a heterotroph
Cain, Bowman & Hacker (2014), Fig. 21.4, after Cebrian & Lartigue (2004) Ecological Monographs In most ecosystems, relatively little NPP is consumed by herbivores Energy Flow Through Food Webs In most ecosystems, most NPP becomes detritus without passing through a heterotroph
Energy Flow & Laws of Thermodynamics 2 nd Law of Thermodynamics In natural thermodynamic processes, entropy never decreases Energy transformations result in an increase in entropy, i.e., only a fraction of the energy captured by one trophic level is available to do work in the next Usually only ~ % of the energy captured or assimilated at one trophic level is transferred to the next trophic level
Trophic Pyramids Cain, Bowman & Hacker (2014), Fig. 21.5
Trophic Pyramids Cain, Bowman & Hacker (2014), Fig. 21.5
Trophic Pyramids Cain, Bowman & Hacker (2014), Fig. 21.5
Trophic Pyramids Cain, Bowman & Hacker (2014), Fig. 21.5
Cain, Bowman & Hacker (2014), Fig Amount of primary producer biomass consumed by heterotrophs is correlated with NPP Energy Flow Through Food Webs
Trophic Efficiency Cain, Bowman & Hacker (2014), Fig Consumption efficiency is the proportion of NPP that is ingested Assimilation efficiency is the proportion of ingested biomass that is assimilated by digestion Production efficiency is the proportion of assimilated biomass that becomes NSP
Bottom-Up vs. Top-Down Influences Control of energy flow through ecosystems Bottom-up view Resources that limit NPP govern energy flow Top-down view Consumption plus non-consumptive species interactions, e.g., competition, facilitation, limit lower trophic levels and govern energy flow The “World is Green” Hypothesis Predators limit herbivores and allow plants to flourish Hairston, Smith & Slobodkin (HSS) (1960) Am. Nat. Photo from Wikimedia Commons
Bottom-Up vs. Top-Down Influences We should always start with a bottom-up template: “the removal of higher trophic levels leaves lower levels present (if perhaps greatly modified), whereas the removal of primary producers leaves no system at all” Hunter & Price (1992) Ecology “Break the food chain and creatures die out above the link” John McPhee’s (1998) Annals of the Former World, pg. 84 Potential reconciliation: NPP determines the number of trophic levels that can be supported in a community; therefore NPP ultimately dictates when top-down forces could cascade back down Oksanen, Fretwell, Arruda & Niemela (OFAN) (1981) Am. Nat.