Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects”

Slides:



Advertisements
Similar presentations
Valence shell excitations in even-even spherical nuclei within microscopic model Ch. Stoyanov Institute for Nuclear Research and Nuclear Energy Sofia,
Advertisements

Nuclear Collective Dynamics II, Istanbul, July 2004 Symmetry Approach to Nuclear Collective Motion II P. Van Isacker, GANIL, France Symmetry and dynamical.
Pavel Stránský 29 th August 2011 W HAT DRIVES NUCLEI TO BE PROLATE? Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México Alejandro.
Emission of Scission Neutrons: Testing the Sudden Approximation N. Carjan Centre d'Etudes Nucléaires de Bordeaux-Gradignan,CNRS/IN2P3 – Université Bordeaux.
Microscopic time-dependent analysis of neutrons transfers at low-energy nuclear reactions with spherical and deformed nuclei V.V. Samarin.
The Collective Model Aard Keimpema.
Nucleon-pair transfer-intensities nuclear shape-phase transitions
Nuclear structure theory D. Bonatsos NuPECC, March 2015.
NPSC-2003Gabriela Popa Microscopic interpretation of the excited K  = 0 +, 2 + bands of deformed nuclei Gabriela Popa Rochester Institute of Technology.
W. Udo Schröder, 2005 Rotational Spectroscopy 1. W. Udo Schröder, 2005 Rotational Spectroscopy 2 Rigid-Body Rotations Axially symmetric nucleus 
Nuclear Low-lying Spectrum and Quantum Phase Transition Zhipan Li School of Physical Science and Technology Southwest University 17th Nuclear Physics Workshop,
Rotational Spectroscopy Born-Oppenheimer Approximation; Nuclei move on potential defined by solving for electron energy at each set of nuclear coordinates.
The Shell Model of the Nucleus 5. Nuclear moments
Dinuclear system model in nuclear structure and reactions.
NSDD Workshop, Trieste, February 2006 Nuclear Structure (II) Collective models P. Van Isacker, GANIL, France.
Odd nuclei and Shape Phase Transitions: the role of the unpaired fermion PRC 72, (2005); PRC 76, (2007); PRC 78, (2008); PRC 79,
fermions c j N bosons A nucleons valence nucleonsN nucleon pairs L = 0 and 2 pairs s,d  even-even nuclei 2.2 The Interacting Boson Approximation A.
1 New formulation of the Interacting Boson Model and the structure of exotic nuclei 10 th International Spring Seminar on Nuclear Physics Vietri sul Mare,
Lecture 20: More on the deuteron 18/11/ Analysis so far: (N.B., see Krane, Chapter 4) Quantum numbers: (J , T) = (1 +, 0) favor a 3 S 1 configuration.
Predoc’ school, Les Houches,september 2004
Collective Model. Nuclei Z N Character j Q obs. Q sp. Qobs/Qsp 17 O 8 9 doubly magic+1n 5/ K doubly magic -1p 3/
Lecture 20 Spherical Harmonics – not examined
Shape phase transition in neutron-rich even-even light nuclei with Z=20-28 H.B.Bai X.W.Li H.F.Dong W.C.Cao Department of Physics, Chifeng University, Chifeng.
原子核配对壳模型的相关研究 Yanan Luo( 罗延安 ), Lei Li( 李磊 ) School of Physics, Nankai University, Tianjin Yu Zhang( 张宇 ), Feng Pan( 潘峰 ) Department of Physics, Liaoning.
The Algebraic Approach 1.Introduction 2.The building blocks 3.Dynamical symmetries 4.Single nucleon description 5.Critical point symmetries 6.Symmetry.
Nuclear deformation in deep inelastic collisions of U + U.
How do nuclei rotate? 1. The molecular picture.
Spontaneous symmetry breaking and rotational bands S. Frauendorf Department of Physics University of Notre Dame.
Surrey Mini-School Lecture 2 R. F. Casten. Outline Introduction, survey of data – what nuclei do Independent particle model and residual interactions.
Quantum mechanics unit 2
IAEA Workshop on NSDD, Trieste, November 2003 The interacting boson model P. Van Isacker, GANIL, France Dynamical symmetries of the IBM Neutrons, protons.
How do nuclei rotate? The nucleus rotates as a whole.
Symmetries and collective Nuclear excitations PRESENT AND FUTURE EXOTICS IN NUCLEAR PHYSICS In honor of Geirr Sletten at his 70 th birthday Stefan Frauendorf,
ShuangQuan Zhang School of Physics, Peking University Static chirality and chiral vibration of atomic nucleus in particle rotor model.
K. P. Drumev Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia, Bulgaria.
Quantum Phase Transitions (QPT) in Finite Nuclei R. F. Casten June 21, 2010, CERN/ISOLDE.
Nuclear and Radiation Physics, BAU, 1 st Semester, (Saed Dababneh). 1 Shell model Notes: 1. The shell model is most useful when applied to closed-shell.
Nuclear and Radiation Physics, BAU, First Semester, (Saed Dababneh). 1 Extreme independent particle model!!! Does the core really remain inert?
Partial Dynamical Symmetry in Odd-Mass Nuclei A. Leviatan Racah Institute of Physics The Hebrew University, Jerusalem, Israel P. Van Isacker, J. Jolie,
Some (more) High(ish)-Spin Nuclear Structure Paddy Regan Department of Physics Univesity of Surrey Guildford, UK Lecture 2 Low-energy.
Interacting boson model s-bosons (l=0) d-bosons (l=2) Interpretation: “nucleon pairs with l = 0, 2” “quanta of collective excitations” Dynamical algebra:
Exactly Solvable gl(m/n) Bose-Fermi Systems Feng Pan, Lianrong Dai, and J. P. Draayer Liaoning Normal Univ. Dalian China Recent Advances in Quantum.
Physics 452 Quantum mechanics II Winter 2011 Karine Chesnel.
Geometric model Potential energy: neglect higher-order termsneglect … depends on 2 internal shape variables A B oblate prolate spherical x y …corresponding.
Quantum phase transitions and structural evolution in nuclei.
Quantum Phase Transitions in Nuclei
Algebraic collective model and its applications Gabriela Thiamová Laboratoire de Physique Subatomique et de Cosmologie Institut National Polytechnique.
Dipa Bandyopadhyay University of York
Q UANTUM CHAOS AND P ERES LATTICES FOR 0+ STATES IN THE G EOMETRIC COLLECTIVE MODEL Pavel Stránský, Pavel Cejnar, Michal Macek 5th Workshop on Shape-Phase.
Emergent Euclidean Dynamical Symmetry in Nuclear Shape Phase Transition Yu Zhang Department of Physics, Liaoning Normal University, Dalian, China
Quantum Phase Transition from Spherical to γ-unstable for Bose-Fermi System Mahmut Böyükata Kırıkkale University Turkey collabration with Padova–Sevilla.
Monday, Oct. 2, 2006PHYS 3446, Fall 2006 Jae Yu 1 PHYS 3446 – Lecture #8 Monday, Oct. 2, 2006 Dr. Jae Yu 1.Nuclear Models Shell Model Collective Model.
No Low-Lying Nuclear Vibrations: Configuration Dependent Pairing and Axial Asymmetry J. F. Sharpey-Schafer University of the Western Cape, South Africa.
Dynamical Model of Surrogate Reaction Y. Aritomo, S. Chiba, and K. Nishio Japan Atomic Energy Agency, Tokai, Japan 1. Introduction Surrogate reactions.
Nordita Workshop on chiral bands /04/2015 Multiple chiral bands associated with the same strongly asymmetric many- particle nucleon configuration.
Rotational energy term in the empirical formula for the yrast energies in even-even nuclei Eunja Ha and S. W. Hong Department of Physics, Sungkyunkwan.
超重原子核的结构 孙 扬 上海交通大学 合作者:清华大学 龙桂鲁, F. Al-Khudair 中国原子能研究院 陈永寿,高早春 济南,山东大学, 2008 年 9 月 20 日.
Determining Reduced Transition Probabilities for 152 ≤ A ≤ 248 Nuclei using Interacting Boson Approximation (IBA-1) Model By Dr. Sardool Singh Ghumman.
IV. Nuclear Structure Topics to be covered include:
Shape parameterization
Yu Zhang(张宇), Feng Pan(潘峰)
oblate prolate l=2 a20≠0, a2±1= a2±2= 0 Shape parameterization
20/30.
PHL424: Nuclear rotation.
Surrey Mini-School Lecture 2 R. F. Casten
Quantal rotation Molecules
Nuclear shapes for the critical point
20/30.
How do nuclei rotate? 1. The molecular picture.
Quantal rotation Molecules
Presentation transcript:

Petrică Buganu, and Radu Budaca IFIN-HH, Bucharest – Magurele, Romania International Workshop “Shapes and Dynamics of Atomic Nuclei: Contemporary Aspects” (SDANCA – 15), 8 – 10 October 2015, Sofia, Bulgaria

The Bohr-Mottelson Hamiltonian: The γ-rigid Hamiltonian for γ=30 o : The γ-rigid Hamiltonian for γ=0 o : E(5): F. Iachello, Phys. Rev. Lett. 85 (2000) spherical vibrator to γ-unstable rotor X(5): F. Iachello, Phys. Rev. Lett. 87 (2001) spherical vibrator to axial rotor Y(5): F. Iachello, Phys. Rev. Lett. 91 (2003) axial rotor to triaxial rotor Z(5): D. Bonatsos, D. Lenis, D. Petrellis, and P. A. Terziev, Phys. Lett. B 588 (2004) 172. prolate rotor to oblate rotor?! Z(4): D. Bonatsos, D. Lenis, D. Petrellis, P. A. Terziev, and I. Yigitoglu, Phys. Lett. B 621 (2005) 102. A. S. Davydov, and A. A. Chaban, Nucl. Phys. 20 (1960) 499. X(3): D. Bonatsos, D. Lenis, D. Petrellis, P. A. Terziev, and I. Yigitoglu, Phys. Lett. B 632 (2006) 238. A. Bohr, Mat. Fyz. Medd. K. Dan. Vidensk. Selsk. 26 (1952) No. 14. A. Bohr, and B. R. Mottelson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 27 (1953) No. 16.

The potentials in the β variable and the γ rigidity values for the most recent γ-rigid solutions. D. Bonatsos, D. Lenis, D. Petrellis, P. A. Terziev, and I. Yigitoglu, Phys. Lett. B 621 (2005) 102. D. Bonatsos, D. Lenis, D. Petrellis, P. A. Terziev, and I. Yigitoglu, Phys. Lett. B 632 (2006) 238. R. Budaca, Eur. Phys. J. A 50 (2014) 87. R. Budaca, Phys. Lett. B 739 (2014) 56. P. Buganu, and R. Budaca, J. Phys. G: Nucl. Part. Phys. 42 (2015) P. Buganu, and R. Budaca, Phys. Rev. C 91 (2015)

Sextic oscillator potential Exact separation of the variables: X(3)-Sextic and Z(4)-Sextic

The quasi-exactly solution for the sextic potential A. G. Ushveridze, Quasi-Exactly Solvable Models in Quantum Mechanics, (Institute of Physics Publishing, Bristol, 1994)

Numerical results Z(4)-SexticX(3)-Sextic Z(4)-Sextic: P. Buganu, and R. Budaca, Phys. Rev. C 91 (2015) X(3)-Sextic: P. Buganu, and R. Budaca, J. Phys. G: Nucl. Part. Phys. 42 (2015)

Z(4)-Sextic: P. Buganu, and R. Budaca, Phys. Rev. C 91 (2015) X(3)-Sextic: P. Buganu, and R. Budaca, J. Phys. G: Nucl. Part. Phys. 42 (2015) Degenerate states! A possible dynamical symmetry?! Z(4)-Sextic X(3)-Sextic Parameter free solutions

Z(4)-Sextic: P. Buganu, and R. Budaca, Phys. Rev. C 91 (2015) X(3)-Sextic: P. Buganu, and R. Budaca, J. Phys. G: Nucl. Part. Phys. 42 (2015) Z(4)-Sextic X(3)-Sextic Experimental realisation of the predicted shape phase transitions

Conclusions  Two new γ-rigid solutions have been proposed, called Z(4)-Sextic and X(3)-Sextic. For both of them, a sextic potential is used which leads to a quasi-exactly solvable equation.  Up to some scale parameters, the energies and the E2 transition probabilities depend on a single free parameter. For special cases when the term β 2 or β 4 cancels, parameter free solutions are obtained.  Varying the free parameter, shape phase transitions from an approximately spherical shape to a well deformed one are described. In the critical point the potential is flat leading to numerical results which are closed to those of X(3) and Z(4) for which an infinite square well was used.  In the critical point of X(3)-Sextic the states are approximately degenerate, indicating the presence of a symmetry which can offer answers for the unknown symmetry of X(5). The β bands of some X(5) candidate nuclei are well described in the present picture.  The plot of the free parameter as a function of the neutron number for isotopes of Xe, Pt, Sm and Nd reveales the presence of the proposed shape phase transitions in these chains.

Content Introduction Brief presentation of the new γ– rigid solutions Numerical results Conclusions

Introduction: Bohr Collective Model The excitation spectra of the nuclei are interpreted as vibrations and rotations of the nuclear surface: R 0 – radius of spherical nucleus, α λμ – surface collective coordinates, Y λμ (θ,φ) – spherical harmonics. Types of multipole deformations: monopole dipole quadrupole octupole hexadecupole A. Bohr, Mat. Fyz. Medd. K. Dan. Vidensk. Selsk. 26 (1952) No. 14. A. Bohr, and B. R. Mottelson, Mat. Fys. Medd. K. Dan. Vidensk. Selsk. 27 (1953) No. 16.

Quadrupole deformation: Wigner function Bohr-Mottelson transformation: Euler angles β=0.4 and γ=nπ/3 (n=0,1,2,3,4,5.): prolate(n=0,2,4), oblate (n=1,3,5) and triaxial in rest. L. Fortunato, Eur. Phys. J. A 26 (2005) The stretching of the nuclear axis. W. Greiner, J. A. Maruhn, Nuclear Models, Springer-Verlag Berlin Heidelberg (1996).

Page  15 Exactly separation of variables for γ=30 0 Sextic oscillator with centrifugal barrier for the variable β

Page  16 Condition to have a potential independent of state: L – even L – odd Final form of the potential