1 Artificial Neural Networks for Structural Vibration Control Ju-Tae Kim: Graduate Student, KAIST, Korea Ju-Won Oh: Professor, Hannam University, Korea.

Slides:



Advertisements
Similar presentations
1 Machine Learning: Lecture 4 Artificial Neural Networks (Based on Chapter 4 of Mitchell T.., Machine Learning, 1997)
Advertisements

Scissor-Jack-Damper System for Reduction of Stay Cable
사장교의 지진 응답 제어를 위한 납고무 받침의 설계 기준 제안
Neural Network Based Approach for Short-Term Load Forecasting
Slide# Ketter Hall, North Campus, Buffalo, NY Fax: Tel: x 2400 Control of Structural Vibrations.
Fractional Order LQR for Optimal Control of Civil Structures Abdollah Shafieezadeh*, Keri Ryan*, YangQuan Chen+ *Civil and Environmental Engineering Dept.
Solution of Eigenproblem of Non-Proportional Damping Systems by Lanczos Method In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics.
CABLE-STAYED BRIDGE SEISMIC ANALYSIS USING ARTIFICIAL ACCELEROGRAMS
Cheng Chen Ph.D., Assistant Professor School of Engineering San Francisco State University Probabilistic Reliability Analysis of Real-Time Hybrid Simulation.
Structural Dynamics & Vibration Control Lab 1 December Department of Civil & Environmental Engineering K orea A dvanced I nstitute of S cience.
Yeong-Jong Moon*: Graduate Student, KAIST, Korea Kang-Min Choi: Graduate Student, KAIST, Korea Hyun-Woo Lim: Graduate Student, KAIST, Korea Jong-Heon Lee:
정형조, 세종대학교 토목환경공학과 조교수 최강민, 한국과학기술원 건설 및 환경공학과 박사과정 지한록, 한국과학기술원 건설 및 환경공학과 석사과정 고만기, 공주대학교 토목환경공학과 교수 이인원, 한국과학기술원 건설 및 환경공학과 교수 2005 년 한국강구조학회 학술발표회.
한국강구조학회 2001 년도 학술발표대회 Three Dimensional Finite Element Analysis of Structures under Wind Loads *Byoung-Wan Kim 1), Woon-Hak Kim 2) and In-Won Lee 3) 1)
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 박선규 : 교수, 성균관대학교 토목공학과 박선규 : 교수, 성균관대학교 토목공학과.
1 Pattern Recognition: Statistical and Neural Lonnie C. Ludeman Lecture 21 Oct 28, 2005 Nanjing University of Science & Technology.
Sang-Won Cho* : Ph.D. Student, KAIST Sang-Won Cho* : Ph.D. Student, KAIST Dong-Hyawn Kim: Senior Researcher, KORDI Dong-Hyawn Kim: Senior Researcher, KORDI.
1 지진하중을 받는 구조물의 MR 댐퍼의 동특성을 고려한 반능동 신경망제어 Heon-Jae Lee 1), Hyung-Jo Jung 2), Ju-Won Oh 3), In-Won Lee 4) 1) Graduate Student, Dept. of Civil and Environmental.
Cheng Chen, Ph.D. Assistant Professor San Francisco State University Interpreting Reliability of Real- Time Hybrid Simulation Results from Actuator Tracking.
1 Efficient Mode Superposition Methods for Non-Classically Damped System Sang-Won Cho, Graduate Student, KAIST, Korea Ju-Won Oh, Professor, Hannam University,
In-Won Lee, Professor, PE In-Won Lee, Professor, PE Structural Dynamics & Vibration Control Lab. Structural Dynamics & Vibration Control Lab. Korea Advanced.
Well Log Data Inversion Using Radial Basis Function Network Kou-Yuan Huang, Li-Sheng Weng Department of Computer Science National Chiao Tung University.
Structural Dynamics & Vibration Control Lab. 1 Kang-Min Choi, Ph.D. Candidate, KAIST, Korea Jung-Hyun Hong, Graduate Student, KAIST, Korea Ji-Seong Jo,
* Dong-Hyawn Kim: Graduate Student, KAIST Ju-Won Oh: Professor, Hannam University Ju-Won Oh: Professor, Hannam University In-Won Lee: Professor, KAIST.
Hyung-Jo Jung Sejong University, Korea Hyung-Jo Jung Sejong University, Korea Kang-Min Choi Korea Advanced Inst. of Science and Tech. Kang-Min Choi Korea.
Non-Bayes classifiers. Linear discriminants, neural networks.
Computational Structural Engineering Institute Autumn Conference 2002 Oct , 2002 VIBRATION CONTROL OF BRIDGE FOR SERVICEABILITY Jun-Sik Ha 1),
Robust Hybrid Control of a Seismically Excited Cable-Stayed Bridge JSSI 10th Anniversary Symposium on Performance of Response Controlled Buildings Kyu-Sik.
Hong-Ki Jo 1), Man-Gi Ko 2) and * In-Won Lee 3) 1) Graduate Student, Dept. of Civil Engineering, KAIST 2) Professor, Dept. of Civil Engineering, Kongju.
Structural Dynamics & Vibration Control Lab., KAIST 1 Structural Vibration Control Using Semiactive Tuned Mass Damper Han-Rok Ji, Graduate Student, KAIST,
Structural Dynamics & Vibration Control Lab 1 Smart Passive System based on MR Damper for Benchmark Structural Control Problem for a Seismically Excited.
지진 하중을 받는 구조물의 능동 모달 퍼지 제어시스템
*Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee *Man-Cheol Kim, Hyung-Jo Jung and In-Won Lee Structural Dynamics & Vibration Control Lab. Structural Dynamics.
CONTENTS Introduction Semi-Active Control Proposed Control Algorithm
조상원 * : 박사과정, 한국과학기술원 건설환경공학과 조상원 * : 박사과정, 한국과학기술원 건설환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 정형조 : 교수, 세종대학교 토목환경공학과 이종헌 : 교수, 경일대학교 토목공학과 이종헌 : 교수, 경일대학교 토목공학과.
Reservoir Uncertainty Assessment Using Machine Learning Techniques Authors: Jincong He Department of Energy Resources Engineering AbstractIntroduction.
Structural Dynamics & Vibration Control Lab., KAIST, Korea 1 A Comparative Study on Aseismic Performances of Base Isolation Systems for Multi-span Continuous.
Yeong-Jong Moon 1), Jong-Heon Lee 2) and In-Won Lee 3) 1) Graduate Student, Department of Civil Engineering, KAIST 2) Professor, Department of Civil Engineering,
MR 댐퍼를 기반으로 하는 스마트 수동제어 시스템 대한토목학회 정기 학술대회 2004 년 10 월 21 일 조상원 : KAIST 건설환경공학과, 박사 이헌재 : KAIST 건설환경공학과, 박사과정 오주원 : 한남대학교 토목환경공학과, 교수 이인원 : KAIST 건설환경공학과,
* 김동현 : KAIST 토목공학과, 박사후연구원 오주원 : 한남대학교 토목환경공학과, 교수 오주원 : 한남대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이규원 : 전북대학교 토목환경공학과, 교수 이인원 : KAIST 토목공학과, 교수 이인원 :
* In-Won Lee 1), Sun-Kyu Park 2) and Hong-Ki Jo 3) 1) Professor, Department of Civil Engineering, KAIST 2) Professor, Department of Civil Engineering,
The Asian-Pacific Symposium on Structural Reliability and its Applications Seoul, Korea, August 18-20, 2004 Kyu-Sik Park Kyu-Sik Park, Ph. D. Candidate,
Professor : Ming – Shyan Wang Department of Electrical Engineering Southern Taiwan University Thesis progress report Sensorless Operation of PMSM Using.
Structural Dynamics & Vibration Control Lab. 1 모달 퍼지 이론을 이용한 지진하중을 받는 구조물의 능동제어 최강민, 한국과학기술원 건설 및 환경공학과 조상원, 한국과학기술원 건설 및 환경공학과 오주원, 한남대학교 토목공학과 이인원, 한국과학기술원.
모달변위를 이용한 지진하중을 받는 구조물의 능동 신경망제어 2004 년도 한국전산구조공학회 춘계 학술발표회 국민대학교 2004 년 4 월 10 일 이헌재, 한국과학기술원 건설및환경공학과 박사과정 정형조, 세종대학교 토목환경공학과 조교수 이종헌, 경일대학교 토목공학과 교수.
Robust Analysis of a Hybrid System Controlled by a  -Synthesis Method Kyu-Sik Park, Post Doctoral Researcher, UIUC, USA Hyung-Jo Jung, Assistant Professor,
Dynamic Neural Network Control (DNNC): A Non-Conventional Neural Network Model Masoud Nikravesh EECS Department, CS Division BISC Program University of.
Bab 5 Classification: Alternative Techniques Part 4 Artificial Neural Networks Based Classifer.
Kyu-Sik Park Kyu-Sik Park, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Research Assistant Professor, KAIST, Korea In-Won Lee In-Won Lee,
1 지진시 구조물의 지능제어 기법 Intelligent Control of Structures under Earthquakes 김동현 : 한국과학기술원 토목공학과, 박사과정 이규원 : 전북대학교 토목공학과, 교수 이종헌 : 경일대학교 토목공학과, 교수 이인원 : 한국과학기술원.
Kang-Min Choi, Kang-Min Choi, Graduate Student, KAIST, Korea Hyung-Jo Jung Hyung-Jo Jung, Professor, Sejong National University, Korea In-Won Lee In-Won.
Yeong-Jong Moon 1), Sun-Kyu Park Lee 2) and In-Won Lee 3) 1) Graduate Student, Department of Civil Engineering, KAIST 2) Professor, Department of Civil.
Smart Passive System Based on MR Damper JSSI 10 th Anniversary Symposium on Performance of Response Controlled Buildings Nov , Yokohama Japan.
Sang-Won Cho* : Ph.D. Candidate, KAIST Sang-Won Cho* : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Byoung-Wan : Ph.D. Candidate, KAIST Hyung-Jo.
Lecture 2 Introduction to Neural Networks and Fuzzy Logic President UniversityErwin SitompulNNFL 2/1 Dr.-Ing. Erwin Sitompul President University
HYBRID SYSTEM CONTROLLED BY A  -SYNTHESIS METHOD International Symposium on Earthquake Engineering Commemorating 10 th Anniversary of the 1995 Kobe Earthquake.
Basics of Earthquakes Frequency
Dynamic Analysis of Structures by
VIBRATION CONTROL OF STRUCTURE USING CMAC
Modal Control for Seismically Excited Structures using MR Damper
Prof. Carolina Ruiz Department of Computer Science
A BRIDGE WITH VEHICLE LOADS
KAIST-Kyoto Univ. Joint Seminar
반능동 MR 유체 감쇠기를 이용한 지진하중을 받는 구조물의 신경망제어 이헌재, 한국과학기술원 건설환경공학과 석사과정
Implementation of Modal Control for
Masoud Nikravesh EECS Department, CS Division BISC Program
Artificial Intelligence 10. Neural Networks
A Survey on State Feedback AMD Control
Modified Modal Methods in Asymmetric Systems
Areas under the receiver operating characteristic (ROC) curves for both the training and testing data sets based on a number of hidden-layer perceptrons.
Prof. Carolina Ruiz Department of Computer Science
Presentation transcript:

1 Artificial Neural Networks for Structural Vibration Control Ju-Tae Kim: Graduate Student, KAIST, Korea Ju-Won Oh: Professor, Hannam University, Korea In-Won Lee: Professor, KAIST, Korea Aug. 23, 1999.

2 CONTENTS 1. Introduction 2. Neural Networks for Control 3. Numerical Examples 4. Conclusions

3 1. Introduction required impossible/hard Response based ANN control Model based conventional control Mathematical model Parametric uncertainty Parametric variation not required simple/easy  Conventional Control vs. ANN Control

4  Previous Works on ANN Control in CE  H. M. Chen et al. (1995), J. Ghaboussi et al. (1995) - pioneering research in civil engineering  K. Nikzad (1996) - delay compensation  K. Bani-Hani et al. (1998) - nonlinear structural control Condition : desired response is to be pre-determined.

5 Training rule of controller neural network SDOF linear/nonlinear structural control  Scope

6 Emulator neural network - trained to imitate responses of unknown structures. - used for training of controller neural network. Controller neural network - trained to make control force. - used for controller. 2. Neural Networks for Control  Two Neural Networks

7 Controller (ANN) Minimize error(E) Emulator (ANN) Structure Load Z -1 + _ D (desired response)  E=D-X  Previous Studies Weights of controller neural network(W) are updated to minimize error function(E). U X

8 Controller (ANN) Minimize cost(J) Emulator (ANN) Structure Load Z -1  Proposed Method Weights of controller neural network(W) are updated to minimize cost function(J) instead of error function(E). U X

9 (1) : response, control force vector : weighting matrices Cost function where

10 Controller neural network hidden layer Output layer (2) (3) (4) (5) IiIi ukuk W ji W kj i=1~L j=1~M k=1~N

11 Learning rule: weights of output-hidden layer (6) (7)

12 (8) (9) (10)where

13 (11) (12) Learning rule: weights of hidden-input layer

14 (13) (14) where

15 3. Numerical Examples  Control of Linear Structure Equation of motion : mass : damping : stiffness : displacement : ground acceleration : control force (15)

16 State-space form Let, then (16) (17)

17 Parameters Controller neural network

18 (a) El Centro earthquake(1940)(b) California earthquake(1952) (c) Northridge earthquake(1994) Ground accelerations( ) TRAINEDUNTRAINED

epoch < Cost function(J) Minimization of cost function

20 (a) El Centro earthquake(trained) (b) California earthquake(untrained) Control results

21 (c) Northridge earthquake(untrained)

22  Control of Nonlinear Structure (18) (19) (20) Equation of motion Parameters

23

24 (a) El Centro earthquake(trained) (b) California earthquake(untrained) Control results-1

25 (c) Northridge earthquake(untrained)

26 (a) El Centro earthquake(b) California earthquake(c) Northridge earthquake Control results-2 controlled uncontrolled

27 4. Conclusions Training rule of neural network for optimal control is proposed. Not only linear but nonlinear structure is controlled successfully.