L. Netterdon, M. Elvers, J. Endres, A. Hennig*,

Slides:



Advertisements
Similar presentations
The 26g Al(p, ) 27 Si Reaction at DRAGON Heather Crawford Simon Fraser University TRIUMF Student Symposium July 27, 2005.
Advertisements

Accelerator Physics, JU, First Semester, (Saed Dababneh).
Mitglied der Helmholtz-Gemeinschaft Summary of the School August 17, 2012 | Hans Ströher (Forschungszentrum Jülich) GGSWBS´12 (Batumi, August 13 – 17,
Nuclear physics experiments for the astrophysical p process
3/21/2011| Institut für Kernphysik, TU-Darmstadt, A. Scheikh Obeid| Motivation Experiment 92 Zr Analysis and results Summary and outlook supported by DFG.
Bericht zu ISOLDE Low-energy precision experiments:
N. Pietralla and K. Sonnabend for the SFB 634
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Nuclear Astrophysics Experiments in ATOMKI Gy. Gyürky Institute of Nuclear Research (ATOMKI) Debrecen, Hungary.
Decay- and in-beam spectroscopy of heavy nuclei at the proton dripline Triple-shape coexistence.
Cross section measurements with the Karlsruhe 4 BaF 2 Detector using a 3.7 MV Van de Graaff accelerator M. Weigand, S. Walter, F. Käppeler, R. Plag and.
| Institut für Kernphysik | Project C2 | Inna Pysmenetska | 1 Precision Measurement of the Proton Charge Radius with Elastic Electron Scattering*
| Institut für Kernphysik | Project A2 | Abdulrahman Scheikh Obeid | 1 Nature of Symmetric and Mixed Symmetric 2 + States in 92 Zr from Electron.
Photodissociation as a tool for nuclear astrophysics S. Müller, M. Elvers, J. Endres, M. Fritzsche, J. Hasper, K. Lindenberg, L. Kern, D. Savran, C. Siegel,
EURISOL_DS – Task 11 Subtask 5 Neutron- and proton-induced reactions up to Fermi energy J. Äystö / V. Rubchenya JYFL, Jyväskylä (P9) / KhRI, St.Petersburg.
HEPTECH meeting at Sofia Overview of Technology Marketing at GSI.
| Institut für Kernphysik | Project C2 | Anna Maria Heilmann | 1 Construction of a Neutron Ball for Exclusive Electron Scattering Experiments.
Γ spectroscopy of neutron-rich 95,96 Rb nuclei by the incomplete fusion reaction of 94 Kr on 7 Li Simone Bottoni University of Milan Mini Workshop 1°-
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich Nuclear.
The Pygmy Dipole Resonance – status and new developments Andreas Zilges University of Cologne From Giants to Pygmies – a short history Electromagnetic.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
EuNP Conference Bochum, March 16-20, Topics Accelerators and Instrumentation Astroparticle.
Accelerator technique FYSN 430 Fall Syllabus Task: determine all possible parameters for a new accelerator project Known: Scope of physics done.
Reaction studies at SPIRAL II Krzysztof Rusek * A. Soltan Institute for Nuclear Studies Warsaw * Based on the contributions to the SPIRAL II workshop,
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
Reaction rates in the Laboratory Example I: 14 N(p,  ) 15 O stable target  can be measured directly: slowest reaction in the CNO cycle  Controls duration.
ARIS, Tokyo 2014 Spins, Moments, and Radii of Cd by High-Resolution Laser Spectroscopy D. T. Yordanov 1, D. L. Balabanski 2, M. L. Bissell 3, K.
UNIVERSITY OF JYVÄSKYLÄ Lifetime measurements probing triple shape coexistence in 175 Au Tuomas Grahn Department of Physics University of Jyväskylä The.
Laser driven particle acceleration
Erin E. Peters University of Kentucky Lexington, Kentucky The University of Kentucky Accelerator Laboratory (UKAL)
Text optional: Institutsname Prof. Dr. Hans Mustermann Mitglied der Leibniz-Gemeinschaft Direct measurement of the d( α, γ ) 6 Li cross-section.
Α - capture reactions using the 4π γ-summing technique Α. Lagoyannis Institute of Nuclear Physics, N.C.S.R. “Demokritos”
Shell Model based deformation analysis of light Cadmium isotopes T. Schmidt 1, A. Blazhev 1, K. Heyde 2, J. Jolie 1 1 Institut für Kernphysik, Universität.
Primary beam production target ESR The GSI Radioactive Beam Facilities RISING high-resolution Ge  -spectrometer.
CERN NuPAC meeting Dec 2005 The future of ISOLDE: accelerated radioactive beams Peter Butler 1.HIE-ISOLDE 2.EURISOL.
Kerstin Sonnabend, IKP, TU Darmstadt S-DALINAC - Nuclear Astrophysics Nuclear Astrophysics at the Darmstadt superconducting electron linear accelerator.
Mitglied der Helmholtz-Gemeinschaft on the LEAP conference Polarized Fusion by Ralf Engels JCHP / Institut für Kernphysik, FZ Jülich
Research | Rene Reifarth1 Research at small-scale accelerators René Reifarth Goethe-University Frankfurt 496. Wilhelm und Else Heraeus-Seminar.
In-beam performance of AGATA-DEMONSTRATOR Ideas for the firsts commissioning experiments of the AGATA-DEMONSTRATOR campaign at LNL-Legnaro F. Recchia INFN-LNL.
 -capture measurements with the Recoil-Separator ERNA Frank Strieder Institut für Physik mit Ionenstrahlen Ruhr-Universität Bochum HRIBF Workshop – Nuclear.
Introduction to the Triangle Universities Nuclear Laboratory John Kelley NCSU and TUNL Overview of TUNL Physics Program Emphasis on neutron induced partial.
LLNL-PRES This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344.
Welcome to Jefferson Lab R. D. McKeown Jefferson Lab Hypernuclear Workshop May 27, 2014.
Institut für Theoretische Physik, Universität Giessen LOW-ENERGY MULTIPOLE EXCITATIONS AND NUCLEOSYNTHESIS Nadia Tsoneva INTERNATIONAL SCHOOL OF NUCLEAR.
Some aspects of reaction mechanism study in collisions induced by Radioactive Beams Alessia Di Pietro.
The Final State Interaction in the pp  + (np) and pp  + (Λp) Reactions R. Siudak Institut für Strahlen- und Kernphysik der Universität Bonn, Bonn,
Applications of Nuclear Physics
The INFN Italy EXOTIC group Milano, Napoli, Padova, NIPNE Romania, Crakow Poland. Presented by C.Signorini Dept. of Physics and Astronomy Padova (Italy):
M. Štefánik *), P. Bém, M. Honusek, K. Katovský, M. Majerle, J. Novák, and E. Šimečková AER Working Group F – „Spent Fuel Transmutation“ and INPRO IAEA.
1 Cost Room Availability Passive Shielding Detector spheres for accelerators Radiation Detection and Measurement, JU, First Semester, (Saed Dababneh).
Experimental Nuclear Astrophysics: Key aspects & Open problems Marialuisa Aliotta School of Physics University of Edinburgh Nuclear Physics Autumn Retreat.
Closing remarks Key qestions: Location of SHE shell and SHE nuclear structure Atomic properties and relativistic effects Breakdown of Mendelejev systematic.
The low-temperature nuclear spin equilibrium of H 3 + in collisions with H 2 Kyle N. Crabtree, * Benjamin J. McCall University of Illinois, Urbana, IL.
Lecture 28 Nuclear Energy Chapter 30.1  30.3 Outline Controlled Fission Reaction Fusion in Stars.
© 2003 By Default! A Free sample background from Slide 1 JINR SCIENTIFIC COUNCIL 102 nd Session, September 2007, Dubna.
In-Situ Measurements of Laser-Driven Relativistic Electron Currents in Underdense Plasma M.C. Kaluza, H.-P. Schlenvoigt, B. Beleites, F. Ronneberger, and.
NPA5, Eilat 7/4/20117/4/2011 Apparatus for intense 8 Li RIB production experiment at SARAF Phase I Tsviki Y. Hirsh 1.
FLNR FUNDAMENTAL & APPLIED RESEARCH PROGRAMME (further development in the frame of JINR’s 7-year’s plan) S.N. Dmitriev JINR, Dubna 111th Session of the.
Radiative capture and photodisintegration reactions P. Scholz, AG Zilges, University of Cologne Radiative capture and photodisintegration reactions for.
Extracting β4 from sub-barrier backward quasielastic scattering
M. Spieker1,. , V. Derya1, J. Endres1, M. N. Harakeh2,3, A. Hennig1, D
Direct measurements for nuclear
György Gyürky Institute of Nuclear Research (Atomki) Debrecen, Hungary
Petersburg Nuclear Physics Institute
Hadron Programs at HIRFL-CSR
Elastic alpha scattering experiments
Coulomb Excitation of 114, 116Sn
Pulsed electron beam cooling experiments: data & preliminary results
Presentation transcript:

Experimental facilities for reaction studies in Nuclear Astrophysics in Cologne L. Netterdon, M. Elvers, J. Endres, A. Hennig*, A. Sauerwein*, F. Schlüter, and A. Zilges Institut für Kernphysik, Universität zu Köln 496th WE-Heraeus Seminar on „Astrophysics with modern small-scale accelerators“ Bad Honnef, February 08th, 2012 Supported by the DFG under contract DFG (ZI 510/5-1, INST 216/544-1) *Member of the Bonn-Cologne Graduate School of Physics and Astronomy

Outline Motivation Counting setup for activation measurements Example: 168Yb(a,n) In-beam spectroscopy @ HORUS Example: 92Mo(p,g), 92Mo(a,g) CologneAMS Summary

Motivation measurement of ion-induced reactions experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei e.g. for 168Yb(a,g): EGamow ≈ 7 – 11 MeV << Ecoul ≈ 24 MeV

Motivation measurement of ion-induced reactions experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei e.g. for 168Yb(a,g): EGamow ≈ 7 – 11 MeV << Ecoul ≈ 24 MeV σ ≈ 0.1 – 100 μb very sensitive determination of small cross sections needed activation / in-beam / AMS

Motivation measurement of ion-induced reactions experimental difficulties due to: measurement at energies below the Coulomb barrier for heavy nuclei e.g. for 168Yb(a,g): EGamow ≈ 7 – 11 MeV << Ecoul ≈ 24 MeV σ ≈ 0.1 – 100 μb very sensitive determination of small cross sections needed activation / in-beam / AMS

Counting Setup 2 HPGe clover detectors passive background suppression by Cu and Pb low natural background covers large solid angle

Counting Setup 2 HPGe clover detectors passive background suppression by Cu and Pb low natural background covers large solid angle

Counting Setup 2 HPGe clover detectors passive background suppression by Cu and Pb low natural background covers large solid angle different target geometries possible accurate target positioning to 0.1 mm

Clover detectors 4 independent crystals rel. efficiency of 120 % G. Duchêne et al., NIM A 432 (1999) 90-110

Clover detectors 4 independent crystals rel. efficiency of 120 % advantages: higher count rates reduced summing effects Compton polarimetry add-back algorithms claim gg coincidences between crystals and detectors G. Duchêne et al., NIM A 432 (1999) 90-110

Counting Setup absolute photopeak efficiency @ 1332 keV ≈ 5 % distance to end cap: 13 mm

XIA LLC, User‘s Manual Digital Gamma Finder DGF-4C Data acquisition 4 inputs ADC Trigger / Filter FPGA DSP System FPGA 4 BGO Veto inputs digital data acquisition XIA DGF-4C modules 14-bit pipeline ADC sampling of preamplifier output at 80 MHz listmode data XIA LLC, User‘s Manual Digital Gamma Finder DGF-4C Revision F, Version 4.03

Data acquisition digital data acquisition XIA DGF-4C modules 14-bit pipeline ADC sampling of preamplifier output at 80 MHz listmode data 2 m 1.8 m

Data acquisition digital data acquisition XIA DGF-4C modules 14-bit pipeline ADC sampling of preamplifier output at 80 MHz listmode data cost / space saving very good energy resolution higher count rates 20 cm 6 cm

Digitizer – basic design Detector ADC Pipeline ADC

Digitizer – basic design Detector What to do? ? ADC Pipeline ADC

Digitizer – basic design Detector What to do? ? ADC Pipeline ADC write every trace to hard disk for offline analysis ≈ 500 GB / hour / channel

Digitizer – basic design Detector What to do? ? ADC Pipeline ADC write every trace to hard disk for offline analysis ≈ 500 GB / hour / channel signal processing in hardware using combination of Field Programmable Gate Array (FPGA) Digital Signal Processor (DSP)

Digitizer – basic design Detector ADC Pipeline ADC FPGA Field Programmable Gate Array → applies filter algorithms DSP Digital Signal Processor → determines energy and time

Signal processing - requirements Trigger: select signals of interest Timing: when did the event occur relative to others? Pile-Up: reject events, if they were too close to determine energy Energy: calculate difference between maximum and baseline

Signal processing - requirements Trigger: select signals of interest Timing: when did the event occur relative to others? Pile-Up: reject events, if they were too close to determine energy Energy: calculate difference between maximum and baseline

Trapezoidal filter algorithm XIA LLC, User‘s Manual Digital Gamma Finder DGF-4C Revision F, Version 4.03

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 L=5 G=3 S1 S2 S = S2 – S1 = 0

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 L=5 S2 S1 G=3 S = S2 – S1 = 0

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 0

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 1

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 2

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 3

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 4

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 5

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 5

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 5

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 5

Trapezoidal filter algorithm S t V t 5 4 3 2 1 1 S2 S1 S = S2 – S1 = 0

Fast and slow filter algorithm fast filter → time determination slow filter → energy determination XIA LLC, User‘s Manual Digital Gamma Finder DGF-4C Revision F, Version 4.03

Energy resolution time constant t most important for good energy resolution adjust t parameter to get best peak shape and resolution t = courtesy of N. Warr

Activation measurement of 168Yb(α,n) motivation: improvement of reaction network at 168Yb 168Yb 170Yb 171Yb 169Yb 169Lu 170Lu 171Lu 172Lu 173Hf 172Hf 171Hf 170Hf

Activation measurement of 168Yb(α,n) motivation: improvement of reaction network at 168Yb problems: 172Hf(g,a) needs unstable target 168Yb 170Yb 171Yb 169Yb 169Lu 170Lu 171Lu 172Lu 173Hf 172Hf 171Hf 170Hf (g,a)

Activation measurement of 168Yb(α,n) motivation: improvement of reaction network at 168Yb problems: 172Hf(g,a) needs unstable target 168Yb(a,g): low cross section weak & low-energetic g transitions 168Yb 170Yb 171Yb 169Yb 169Lu 170Lu 171Lu 172Lu 173Hf 172Hf 171Hf 170Hf (a,g)

Activation measurement of 168Yb(α,n) motivation: improvement of reaction network at 168Yb problems: 172Hf(g,a) needs unstable target 168Yb(a,g): low cross section weak & low-energetic g transitions 168Yb 170Yb 171Yb 169Yb 169Lu 170Lu 171Lu 172Lu 173Hf 172Hf 171Hf 170Hf (α,n) measure168Yb(α,n) to improve a+168Yb OMP

Activation measurement of 168Yb(α,n) motivation: improvement of reaction network at 168Yb T. Rauscher, NON-SMOKERWEB,5.8.1dw 168Yb 170Yb 171Yb 169Yb 169Lu 170Lu 171Lu 172Lu 173Hf 172Hf 171Hf 170Hf (α,n) cross section sensitive to g and neutron width

Experimental setup @ PTB Braunschweig a-beam

Experimental setup @ PTB Braunschweig U = -300V a-beam Water cooling Target a-beam Cooling trap Ea = 12.9 MeV – 15.1 MeV activation period ≈ 5 h – 20 h current ≈ 600 nA target thickness ≈ 230 – 450

Activation measurement of 168Yb(α,n) 840 keV 667 keV 740 keV 935 keV 835 keV 168 keV 95 keV ≈ 5 ms g.s. 171Yb 168Yb(a,n) 171Lu ε T1/2 = 8.24 d 171Hf 840 740 667 Ea = 14.55 MeV counting period ≈ 23 h

Results: 168Yb(a,n)171Hf PRELIMINARY A.J. Koning, S. Hilaire and M.C. Duijvestijn,TALYS-1.2 T. Rauscher, NON-SMOKERWEB,5.8.1dw no calculation reproduces energy dependence correctly overprediction of cross sections up to one order of magnitude

Limitations of activation technique (a,g) not accessible Activation technique not applicable in many cases because of stable reaction products inconvenient half-lives weak g intensities Only 20% of stable nuclei accessible In-beam / AMS technique to overcome limitations

Tandem accelerator in Cologne 10 MV Tandem ion accelerator beam intensities up to 1 µA (p) / ≈ few 100 nA (a-particles) restart in spring 2012 after complete refurbishment high efficiency HPGe detector array HORUS for in-beam g spectroscopy

In-beam measurements @ HORUS array of 14 HPGe detectors up to 6 equipped with BGO shields absolute photopeak efficiency @ 1332 keV: ≈ 2 % determination of angular distributions coincidence techniques for background suppression digital data acquisition in preparation

In-beam measurements @ HORUS Test experiment for 92Mo(p,g) activation measurement can be performed simultaneously comparison with existing data from an activation experiment possible (T. Sauter et al., PRC 55 (1997) 3127) 92Mo 94Mo 95Mo 93Mo 93Tc 94Tc 95Tc 96Tc 97Ru 96Ru 95Ru 94Ru e, b+ (p,g) T1/2(93Tcg) =2.75 h Ep = 2.8 – 3.3 MeV Gamow window: 1.6 – 3.6 MeV current ≈ 200 pnA

partial cross sections In-beam measurements @ HORUS 93Tc 27Al(p,p‘) 92Mo(p,g)93Tc 27Al(p,g)28Si 27Al(p,g)28Si Ep= 3300 keV Q = 4087 keV 19F(p,a)16O de-excitation of compound state partial cross sections

Partial cross sections In-beam measurements @ HORUS 93Tc 27Al(p,p‘) 92Mo(p,g)93Tc 27Al(p,g)28Si 27Al(p,g)28Si Ep= 3300 keV Q = 4087 keV 19F(p,a)16O de-excitation of compound state transitions to ground state total cross section Partial cross sections

Partial cross sections production of 1st excited state In-beam measurements @ HORUS 93Tc 27Al(p,p‘) 92Mo(p,g)93Tc 27Al(p,g)28Si 27Al(p,g)28Si Ep= 3300 keV Q = 4087 keV 19F(p,a)16O de-excitation of compound state transitions to ground state transitions to 1st excited state Total cross section Partial cross sections production of 1st excited state

Results: 92Mo(p,g) PRELIMINARY

Results: 92Mo(p,g) PRELIMINARY

Results: 92Mo(p,g) PRELIMINARY

Results: 92Mo(p,g) PRELIMINARY

In-beam measurements @ HORUS Test experiment for 92Mo(a,g) comparison with in-beam measurement using 4p NaI detector (to be published) a energies ~ 9.3 - 10 MeV Gamow window: 5.5 – 8.6 MeV current ~ 30 pnA 92Mo 94Mo 95Mo 93Mo 93Tc 94Tc 95Tc 96Tc 97Ru 96Ru 95Ru 94Ru (a,g)

In-beam measurements @ HORUS 92Mo(a,g)96Ru Ea= 9300 keV Q = 1692 keV Many background reactions: Target chamber 27Al(a,n)30P 27Al(a,p)30Si 27Al(a,a‘)27Al Tantalum coating of chamber

In-beam measurements @ HORUS 92Mo(a,g)96Ru Ea= 9300 keV Q = 1692 keV Many background reactions: Target chamber 27Al(a,n)30P 27Al(a,p)30Si 27Al(a,a‘)27Al Target contaminants 13C(a,n)16O 17O(a,n)20Ne 18O(a,n)21Ne Tantalum coating of chamber High vacuum or „Cooling Finger“

In-beam measurements @ HORUS 92Mo(a,g)96Ru Ea= 9300 keV Q = 1692 keV Many background reactions: Target chamber 27Al(a,n)30P 27Al(a,p)30Si 27Al(a,a‘)27Al Target contaminants 13C(a,n)16O 17O(a,n)20Ne 18O(a,n)21Ne Competitive reactions 92Mo(a,p)95Tc Decay of radioactive reaction products Tantalum coating of chamber High vacuum or „Cooling Finger“

In-beam measurements @ HORUS 92Mo(a,g)96Ru Ea= 9300 keV Q = 1692 keV Many background reactions: Target chamber 27Al(a,n)30P 27Al(a,p)30Si 27Al(a,a‘)27Al Target contaminants 13C(a,n)16O 17O(a,n)20Ne 18O(a,n)21Ne Competitive reactions 92Mo(a,p)95Tc Decay of radioactive reaction products + Tantalum coating of chamber use gg coincidence techniques High vacuum or „Cooling Finger“

In-beam measurements @ HORUS 92Mo(a,g)96Ru No coincidence 600 800 1000 1200 1400 1600 1800 Coincidence with Eg=833 keV Eg [keV] Eg [keV]

In-beam measurements @ HORUS 92Mo(a,g)96Ru No coincidence 600 800 1000 1200 1400 1600 1800 Coincidence with Eg=833 keV Eg [keV] Eg [keV]

In-beam measurements @ HORUS 92Mo(a,g)96Ru No coincidence Coincidence with Eg=833 keV Eg [keV]

Cologne AMS Tandetron accelerator with 6 MV terminal voltage standard isotopes: 10Be, 14C, 26Al, 36Cl, 41Ca, 129I (geosciences, pre- and protohistory) ample beam time reserved for nuclear physics applications Universität zu Köln

Cologne AMS Status: first 14C test measurement successful in February 2011 start of standard operation in fall 2011

Precision for acceptance Cologne AMS results from first performance test for standard cosmogenic nuclides Isotopes Precision for acceptance Measured precision 10Be / 9Be 3 % at 10-12 1.9 % 14C / 12C 0.5 % at 10-12 0.3 % 26Al / 27Al 3 % at 10-11 1.3 % 36Cl / 35Cl courtesy of S. Heinze

Precision for acceptance Cologne AMS results from first performance test for standard cosmogenic nuclides Isotopes Precision for acceptance Measured precision 10Be / 9Be 3 % at 10-12 1.9 % 14C / 12C 0.5 % at 10-12 0.3 % 26Al / 27Al 3 % at 10-11 1.3 % 36Cl / 35Cl courtesy of S. Heinze prime example for Nuclear Astrophysics: 144Sm(a,g)148Gd

Summary & Outlook several techniques to study (p,g) and (a,g) reactions of astrophysical relevance on stable nuclei

Summary & Outlook several techniques to study (p,g) and (a,g) reactions of astrophysical relevance on stable nuclei activation technique counting setup with 2 HPGe clover detectors gg coincidences and advantages of digital data acquisition in-beam technique HORUS array provides large amount of information accelerator mass spectrometry

Summary & Outlook several techniques to study (p,g) and (a,g) reactions of astrophysical relevance on stable nuclei activation technique counting setup with 2 HPGe clover detectors gg coincidences and advantages of digital data acquisition in-beam technique HORUS array provides large amount of information accelerator mass spectrometry provide experimental data base for (p,g) and (a,g) reactions derive reliable global properties, e.g., optical model potentials

V. Derya, M. Elvers, J. Endres, A. Hennig, Experimental Facilities for Reaction Studies in Nuclear Astrophysics in Cologne V. Derya, M. Elvers, J. Endres, A. Hennig, J. Mayer, S. Pascu, S. Pickstone, A. Sauerwein, F. Schlüter, M. Spieker, K. O. Zell, and A. Zilges H.W. Becker and D. Rogalla U. Giesen

168Yb(a,g)171Hf - Sensitivity