1 Trig. Day 3 Special Right Triangles. 2 45°-45°-90° Special Right Triangle 45° Hypotenuse X X X Leg Example: 45° 5 cm.

Slides:



Advertisements
Similar presentations
Special Right Triangles
Advertisements

CH 8 Right Triangles. Geometric Mean of 2 #’s If you are given two numbers a and b you can find the geometric mean. a # = # b 3 x = x 27 Ex ) 3 and 27.
Special Right Triangles
Test For Congruent Triangles. Test 1 3 cm 4 cm 3 cm Given three sides : SSS Two triangles are congruent if the three sides of one triangle are equal to.
Special Right Triangles Keystone Geometry
Special Right Triangles
Becky Afghani, LBUSD Math Curriculum Office, 2004 Right Triangles.
Unit 7 Part 2 Special Right Triangles 30°, 60,° 90° ∆s 45°, 45,° 90° ∆s.
Trigonometry. Basic Ratios Find the missing Law of Sines Law of Cosines Special right triangles
Geometry Section 9.4 Special Right Triangle Formulas
5.1 Special Right Triangles. What you should already know… Right triangles have one 90 o angle The longest side is called the HYPOTENUSE  It is directly.
Geometry Section 7.4 Special Right Triangles. 45°-45°-90° Triangle Formed by cutting a square in half. n n.
Special Right Triangles. Draw 5 squares with each side length increasing by
Special Right Triangles
5.2 Trigonometric Ratios in Right Triangles
7.2 Finding a Missing Side of a Triangle using Trigonometry
8.2 Special Right Triangles
Special Right Triangles What kind of triangle is this? Isosceles What are the measures of the other two angles? 45° and 45°
8.2 Special Right Triangles. Side lengths of Special Right Triangles Right triangles whose angle measures are 45°-45°-90° or 30°- 60°-90° are called special.
8.2 Special Right Triangles
Special Right Triangles Keystone Geometry
Special Right Triangles
Warm-up Solve the equation for the missing variable. Assume all variables are positive. Express the answer in simplified radical form. 1. c 2 =
Honors Geometry Section 5.5 Special Right Triangle Formulas.
Pythagorean Theorem Converse Special Triangles. Pythagorean Theorem What do you remember? Right Triangles Hypotenuse – longest side Legs – two shorter.
 Remember the pattern for right triangles: Area of small square + Area of medium square = Area of large square.
Pythagorean Theorem and Special Right Triangles. Anatomy of a Right Triangle Why is a right triangle called a right triangle? Because it is a triangle.
Special Right Triangles 9.4 Chapter 9 Right Triangles and Trigonometry Section 9.4 Special Right Triangles FIND THE SIDE LENGHTS OF SPECIAL RIGHT TRIANGLES.
8-2 Special Right Triangles Objective: To use the properties of and triangles.
Describes the relationship between the lengths of the hypotenuse and the lengths of the legs in a right triangle.
Special Right Triangles. Take a square… Find its diagonal Here it is.
Special Right Triangles Lesson 7-3: Special Right Triangles1.
Lesson 8-4 Special Right Triangles (page 300) Essential Question How can you apply right triangle facts to solve real life problems?
– Use Trig with Right Triangles Unit IV Day 2.
Special Right Triangles
Solving sides of special right triangles
Introduction to Special Right Triangles
Copyright 2011 Davitily.
Special Right Triangles
8-2 Special Right triangles
9.2 Special Right Triangles EQ: What are the relationships between the sides on a triangle? Moody Mathematics.
Lesson 10: Special Right Triangles
8-2 Special Right Triangles
7.4 Special Right Triangles
Section 5.5: Special Right Triangles
Chapter 9 Right Triangles and Trigonometry
8-4: Special Right Triangles
Special Right Triangles
Chapter 9 Right Triangles and Trigonometry
Lesson: Special Right Triangles
Applying Relationships in Special Right Triangles
45°-45°-90° Special Right Triangle
Special Right Triangles Keystone Geometry
Rhombus Kite Trapezoid 30° - 60° - 90° 45°- 45° - 90°
Special Right Triangles
Special Right Triangles
Special Right Triangles
Lesson 8 – 3 Special Right Triangles
© T Madas.
Special Right Triangles
Special Right Triangles
5.1 Special Right Triangles
Special Right Triangles
Special Right Triangles
The Pythagorean Theorem
Special Right Triangles
Special Right Triangles
7-3 Special Right Triangles
Special Right Triangles
Presentation transcript:

1 Trig. Day 3 Special Right Triangles

2 45°-45°-90° Special Right Triangle 45° Hypotenuse X X X Leg Example: 45° 5 cm

3 30°-60°-90° Special Right Triangle 30° 60° Hypotenuse X 2X X Longer Leg Shorter Leg Example: 30° 60° 10 cm 5 cm

4 Example: Find the value of a and b. 60° 7 cm a b Step 1: Find the missing angle measure.30° Step 2: Decide which special right triangle applies.30°-60°-90° Step 3: Match the 30°-60°-90° pattern with the problem. 30° 60° x 2x a = cm b = 14 cm Step 5: Solve for a and b Step 4: From the pattern, we know that x = 7, b = 2x, and a = x.

5 Example: Find the value of a and b. 45° 7 cm a b Step 1: Find the missing angle measure.45° Step 2: Decide which special right triangle applies.45°-45°-90° Step 3: Match the 45°-45°-90° pattern with the problem. 45° x x x Step 4: From the pattern, we know that x = 7, a = x, and b = x. a = 7 cm b = 7 cm Step 5: Solve for a and b