Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy zugbreharkir iza reu PSSPSS PSSPSS PSSPSS PSSSPSSS PSSPSS.

Slides:



Advertisements
Similar presentations
Rossana Dragani Using and evaluating PROMOTE services at ECMWF PROMOTE User Meeting Nice, 16 March 2009.
Advertisements

Lecture 3: A brief background to multivariate statistics
The Effect of Observing Environment on Temperature in North China Plain Area Jianxia Guo 1, Xin Li 2 1. Meteorological Observation Center of CMA, Beijing,
©2014 IDBS, Confidential Statistical Process Control Workshop An Introduction to the Principles behind SPC Ilca Croufer.
Use of Kalman filters in time and frequency analysis John Davis 1st May 2011.
AP Statistics Chapter 3 Practice Problems
M. De Mazière et al., HYMN, May 2007 Status of WP4: FTIR measurements M. De Mazière (BIRA-IASB) K. Petersen, T. Warneke, J. Notholt (U. Bremen)
Forschungszentrum Karlsruhe in der Helmholtz-Gemeinschaft NDACC H2O workshop, Bern, July 2006 Water vapour profiles by ground-based FTIR Spectroscopy:
ECMWF CO 2 Data Assimilation at ECMWF Richard Engelen European Centre for Medium-Range Weather Forecasts Reading, United Kingdom Many thanks to Phil Watts,
Data assimilation of trace gases in a regional chemical transport model: the impact on model forecasts E. Emili 1, O. Pannekoucke 1,2, E. Jaumouillé 2,
Improvement and validation of OMI NO 2 observations over complex terrain A contribution to ACCENT-TROPOSAT-2, Task Group 3 Yipin Zhou, Dominik Brunner,
Cloud Detection 1) Optimised CI Microwindowscnc 2) Singular Vector Decomposition 3) Comparison of Methods fffffffffff.
Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the biosphere HYMN 6 month progress meeting K. Petersen, M. De Mazière.
VALIDATION OF SCIAMACHY CH 4 SCIENTIFIC PRODUCTS USING GROUND-BASED FTIR MEASUREMENTS B. Dils, M. De Mazière, C. Vigouroux, C. Frankenberg, M. Buchwitz,
Lec 26: Ch3.(T&LD): Traffic Analysis – Trip generation
Report on the City Carrier Street Time Study January 14, 2015.
…….CT Physics - Continued V.G.WimalasenaPrincipal School of radiography.
Chapter 4 Measures of Variability
ESA Project- Coupled Model Assimilation Year 1 workshop Aim: To establish coupled Atmosphere-Ocean assimilation system at ECMWF and demonstrate improved.
Annex I: Methods & Tools prepared by some members of the ICH Q9 EWG for example only; not an official policy/guidance July 2006, slide 1 ICH Q9 QUALITY.
Neighborhood Operations
Geo479/579: Geostatistics Ch13. Block Kriging. Block Estimate  Requirements An estimate of the average value of a variable within a prescribed local.
Chapter 2 Dimensionality Reduction. Linear Methods
Page 1 Sciamachy Validation Workshop – Bremen December 2004 Contribution to the validation of SCIAMACHY scientific data products for CO, CH 4, CO.
ICDC7, Boulder, September 2005 CH 4 TOTAL COLUMNS FROM SCIAMACHY – COMPARISON WITH ATMOSPHERIC MODELS P. Bergamaschi 1, C. Frankenberg 2, J.F. Meirink.
Name: Angelica F. White WEMBA10. Teach students how to make sound decisions and recommendations that are based on reliable quantitative information During.
Physics 270 – Experimental Physics. Standard Deviation of the Mean (Standard Error) When we report the average value of n measurements, the uncertainty.
Texture. Texture is an innate property of all surfaces (clouds, trees, bricks, hair etc…). It refers to visual patterns of homogeneity and does not result.
Least SquaresELE Adaptive Signal Processing 1 Method of Least Squares.
Page 1 MIPAS QWG#12 14/16 February 2007 Retrieval of 15 N/ 14 N isotopic ratio from MIPAS spectra Feasibility of 15 N/ 14 N isotopic ratio profile retrieval.
UV-vis data and NORS validation server NORS/NDACC UV-VIS meeting, Brussels, 3-4 July F. Hendrick, B. Langerock, M. Van Roozendael, and M. De Mazière.
INTRODUCTION When two or more instruments sound the same portion of atmosphere and observe the same species either in different spectral regions or with.
SCIAMACHY Validation Workshop, 6-8 Dec 2004, Bremen CO, CH4, CO2, and N2O columns retrieved from SCIAMACHY by WFM-DOAS: Algorithm, released data products,
WP 3 Satellite observations. SCIAMACHY retrieval Month 15: Initial error report Month 18: First dataset for CH4 and CO Incorporation of ECMWF p/T profiles.
Ground-based spectroscopic studies of atmospheric gaseous composition Ground-based spectroscopic studies of atmospheric gaseous composition Yana Virolainen,
Work package 4 OBSERVATIONS FROM GROUND NETWORKS.
Understanding Your Data Set Statistics are used to describe data sets Gives us a metric in place of a graph What are some types of statistics used to describe.
CH 4 retrievals : status of Ulg work HYMN Workshop, Totnes, October 2007 Liège team Ph. Demoulin, P. Duchatelet, E. Mahieu, Ch. Servais, S. Trabelsi,
Sentinel-5 precursor: TROPOMI Cloud slicing retrieval: Program development and testing with SCIAMACHY/GOME-2 WFDOAS data Kai-Uwe Eichmann, Mark Weber,
Levels of Image Data Representation 4.2. Traditional Image Data Structures 4.3. Hierarchical Data Structures Chapter 4 – Data structures for.
Chapter 28 Cononical Correction Regression Analysis used for Temperature Retrieval.
Evaluation of OMI total column ozone with four different algorithms SAO OE, NASA TOMS, KNMI OE/DOAS Juseon Bak 1, Jae H. Kim 1, Xiong Liu 2 1 Pusan National.
EVOLUTION OF SCIAMACHY CH 4 SCIENTIFIC PRODUCT QUALITY & INITIAL LOOK AT THE ‘HYMN FTIR DATASET’ B. Dils, M. De Mazière, C. Vigouroux, R. Sussmann, F.
Ozone time series and trends Various groups compute trends in different ways. One goal of the workshop is to be able to compare time series and trends.
Measurement of the Long-term trends of Methanol (CH 3 OH) and Carbonyl Sulfide (OCS) Both methyl chloride and carbonyl sulfide have strong infrared bands.
Henk Eskes, OMI meeting June 2006 OMI Nitrogen Dioxide: The KNMI Near-Real Time Product Henk Eskes, Pepijn Veefkind, Folkert Boersma, Ronald van.
Comparisons CH 4 SCIAMACHY / GROUND-BASED FTIR B. Dils, BIRA + HYMN partners Corinne Vigouroux, BIRA, HYMN progress meeting, 7-8 April 2008.
H 2 O retrieval from S5 NIR K. Weigel, M. Reuter, S. Noël, H. Bovensmann, and J. P. Burrows University of Bremen, Institute of Environmental Physics
S5P tropical tropospheric ozone product based on convective cloud differential method Klaus-Peter Heue, Pieter Valks, Diego Loyola, Deutsches Zentrum für.
+ Data Analysis Chemistry GT 9/18/14. + Drill The crown that King Hiero of Syracuse gave to Archimedes to analyze had a volume of 575 mL and a mass of.
Research Center KarlsruheRalf Sussmann et al. IMK-IFU Garmisch-PartenkirchenHarmonized global SCIA XCH4 validation 1 Harmonized 2003 & 2004 XCH4 data from.
Geology 5670/6670 Inverse Theory 16 Mar 2015 © A.R. Lowry 2015 Last time: Review of Inverse Assignment 1 Expect Assignment 2 on Wed or Fri of this week!
About taking measurements, The meaning of ‘variation’, ‘range’ and ‘mean (average)’, The meaning of ‘accuracy’ and ‘precision’. Learning Objectives You.
Image Enhancement Objective: better visualization of remotely sensed images visual interpretation remains to be the most powerful image interpretation.
HYMN 2nd annual meeting FTIR Introduction/Overview A.K. Petersen, J. Notholt, T. Warneke Hydrogen, Methane and Nitrous oxide: Trend variability, budgets.
Measurements and Data. Topics Types of Data Distance Measurement Data Transformation Forms of Data Data Quality.
HYMN FTIR-WG meeting J. Notholt, M. De Mazière, K. Petersen Hydrogen, Methane and Nitrous oxide: Trend variability, budgets and interactions with the biosphere.
Designs for Experiments with More Than One Factor When the experimenter is interested in the effect of multiple factors on a response a factorial design.
Chapter 4 Variability PowerPoint Lecture Slides Essentials of Statistics for the Behavioral Sciences Seventh Edition by Frederick J Gravetter and Larry.
Chapter 20 Time Series Analysis and Forecasting. Introduction Any variable that is measured over time in sequential order is called a time series. We.
SADDU1/13 SCIAVALIG status report: Product website & Quality assessment status Annelise du Piesanie, Ankie Piters.
WP4: Observations from ground networks. Work package 4 OBSERVATIONS FROM GROUND NETWORKS.
Preliminary results of the validation of IASI CO and CH4 retrievals HYMN Final Meeting October 2009, Brussels, Belgium.
AGU 2008 Highlight Le Kuai Lunch seminar 12/30/2008.
Part 5 - Chapter
SCIAMACHY QWG PM6, Sept Upgrade from SGP V5.02 to V6 .01: Ground-based (delta) validation conclusions A. Keppens, D. Hubert, J. Granville,
CH 5: Multivariate Methods
Determinant of a Matrix
Principal Components Analysis
Hartmut Bösch and Sarah Dance
Presentation transcript:

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy zugbreharkir iza reu PSSPSS PSSPSS PSSPSS PSSSPSSS PSSPSS har: pre-profile fit of HDO via MW´s 1 & 2 kir/iza: pre-profile fit of H2O, O3, N2O, NO2, HCl (MW?), OCS CH4 micro windows, interfering species

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy zugbreharkir iza reu PSSSPSSS PSSSPSSS PSSSPSSS PSSSPSSS PSSSPSSS CH4 micro windows, interfering species

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy zugbreharkir Iza reu PPPSPS PPSPS HDO CH4 micro windows, interfering species

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy zugbreharkir Iza reu PSPS PSPS PPSPS PSSPSS HDO H2O ? ? CH4 micro windows, interfering species

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy zugbreharkir Iza reu PSSSPSSS PSSSPSSS PSSPSS PSSSPSSSS PSSPSS ? ? CH4 micro windows, interfering species

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy H2O dofs=3, HDO dofs=1 H2O dofs=1, HDO dofs=3 H2O dofs=1, HDO dofs=1 At ZUG we don´t find a significant impact of joint profile retrieval of H2O, HDO versus scaling (others?) AV i (  i ) = AV i (  i ) = AV i (  i ) = 0.504

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy At ZUG we don´t find a significant impact of ECMW versus Munich radio sonde (others?) Munich radio sondeECMWF Sigma i Sigma i/sqrt(n i ) day-to-day ECMWF Munich radio sonde

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy At ZUG we find a very small reduction of the diurnal variation using Frankenberg versus HITRAN 04 line data stdv of diurnal variation AV i (  i )

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy At ZUG we don´t se obvious impact on profiles using Frankenberg versus HITRAN 04 line data (others?) HITRAN 04 dofs = 3 dofs = 2 Frankenberg fit line data dofs = 2 dofs = 3

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy ?

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy Bremen and Reunion (dofs  2, diagonal S a ) are significantly unter-estimating true variability

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenHYMN retrieval strategy

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input There can be a significant a priori impact on your columns precision AV i (  i ) (  ) note strong a priori impact for profile scaling (dofs = 1)

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input  Input (I): provide mean tropopause altitude for your site Therefore we construct a set of consistent a priori´s which we provide to each station: We use the CH4 profile from reftoon corrected for tropopause altitude (via the linear transformation described in Arndt Meier´s thesis)  Provide us the mean tropopause altitude for your station(s)

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input AV i (  i )  (daily means) detected day-to-day variability diurnal variation dofs=2 dofs=2.5 dofs=3 It is easy to under- / overestimate XCH4 day-to-day variability because of special regularization settings (e.g., diagonal S a with dofs  2: Bremen, Reunion) (Thikonov-L 1 -tuning) Zugspitze 2003ISSJ 2003Reunion 04/07

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input  Input (II): provide kmat.dat (K x, S e ) from 15 different retrievals Therefore we construct a set of consistent R matrices for each station: We provide you a ready to use R matrix based upon the Tikhonov L1 operator wich is set in a way to yield dofs = 2 (or 2.5, to be decided)  provide kmat.dat (K x, S e ) from 15 different retrievals with the Toon a priori adapted to your site. The ensemble should cover the full span of SZA´s and columns for your site

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input Input (III): prepare for years 2003 and 2004 four indiv. columns data sets: FTIR, SCIA 200 km, SCIA 500 km, SCIA 1000 km calculate XCH4 for FTIR by dividing CH4 column by daily air column (sum up 3rd block in fasmas file)

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input Input (V): calculate  i of day i, average over all days i, separate numbers for 2003 & 2004; (we offer to do that for you, if you like)  i of day i (18 Sep) = 0.13 % n i = 9 columns, 10 min integration per column XCH4 AV i (  i )AV i (  i /sqrt(n i ))  & in per cent

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input Zugspitze FTIR daily means If there is a significant annual cycle: normalize first by dividing by 3rd order polynomial fit!  (daily means) 0.8 % Input (VI): calculate sigma of day-to-day-variability for 2003 & 2004 separately; (we offer to do that for you, if you like)

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input Input (IV): provide statistical numbers for SCIA, 2003 & 2004 separately (we offer to do that for you, if you like) 2003 SCIA AV i (n i ) * Ai(i)Ai(i)A i (  i /sqrt(n i )) day-to-day** SCIA 200 km SCIA 500 km SCIA 1000 km *pixels per day all sigmas in % **first divide data by 3rd order polynomial fit to correct for annual cycle

Research Center KarlsruheRalf Sussmann IMK-IFU Garmisch-PartenkirchenSCIA precision val. paper status/input SCIA IMPA-DOAS v49 now reflects our a priori understanding of the impact of pixel selection radius on columns variability  an average of (SCIA) pixels witin a certain selection radius tends to see the same (case a) or slightly smaller (case b) day-to-day columns variability compared to a point-type measurement (Zugspitze FTIR) selection radius tropopause altitude surface level Case a): (planetary-)wave length > selection radius Case b): (planetary-)wave length < selection radius north south altitude z