Starter 1) Write the expression and value of Kw [H+][OH-]kw 1x 10 -2 1x 10 -12 1.00 x 10 -14 1x 10 -2 1.00 x 10 -14 1x 10 -4 1.00 x 10 -14 1x 10 -5 1.00.

Slides:



Advertisements
Similar presentations
Applications of Aqueous Equilibria
Advertisements

Lecture 2 Dr. Kumar Aid-base balance-Salivary Buffering 1.
PART 4: Salt Hydrolysis and Buffer Solutions
Chapter 16: Aqueous Ionic Equilibria Common Ion Effect Buffer Solutions Titrations Solubility Precipitation Complex Ion Equilibria.
ACIDS AND BASES Dissociation Constants. weaker the acid, the stronger its conjugate base stronger the acid, the weaker its conjugate base.
Chapter 9 Acids, Bases, & Salts
Acid-Base Equilibria L.O.: To be able to explain what a buffer is.
Aqueous Equilibria © 2009, Prentice-Hall, Inc. The Common-Ion Effect Consider a solution of acetic acid: If acetate ion is added to the solution, Le Châtelier.
Chapter 15 Applications of Aqueous Equilibria. The Common-Ion Effect Common-Ion Effect: The shift in the position of an equilibrium on addition of a substance.
BUFFER SOLUTIONS A guide for A level students © 2004 JONATHAN HOPTON & KNOCKHARDY PUBLISHING.
Acids, Bases and Buffers The Br Ø nsted-Lowry definitions of an acid and a base are: Acid: species that donates a proton Base: species that can accept.
THE CO 2 -H 2 O SYSTEM - I Carbonic acid is a weak acid of great importance in natural waters. The first step in its formation is the dissolution of CO.
1 Chapter 10 Acids and Bases 10.9 Buffers. 2 When an acid or base is added to water, the pH changes drastically. A buffer solution resists a change in.
EQUILIBRIUM Part 1 Common Ion Effect. COMMON ION EFFECT Whenever a weak electrolyte and a strong electrolyte share the same solution, the strong electrolyte.
Ch. 15: Applications of Aqueous Equilibria 15.1 Common Ion Effect.
Section 2: Buffered Solutions.  Solutions prepared with common ions have a tendency to resist drastic pH changes even when subjected to the addition.
Prepared by Prof. Odyssa Natividad R.M. Molo. Consider a solution that contains not only a weak acid (HC 2 H 3 O 2 ) but also a soluble salt (NaC 2 H.
Acid/Base Chemical Equilibria. The Brønsted Definitions  Brønsted Acid  proton donor  Brønsted Base  proton acceptor  Conjugate acid - base pair.
Acid base equilibria.
Calculations Involving Acids and Bases IB Chemistry Power Points Topic 18 Acids and Bases
Chapter 17 buffers- resist changes in pH by neutralizing added acid or base -acid will neutralize added OH - (base) and base will neutralize added H +
PART 3: Weak Acids & Bases Unit 08 IB Topics 8 & 18 Chapters 14 & 15.
PH calculations. What is pH? pH = - log 10 [H + (aq) ] where [H + ] is the concentration of hydrogen ions in mol dm -3 to convert pH into hydrogen ion.
PH and IONIC EQUILIBRIA A guide for A level students KNOCKHARDY PUBLISHING 2015 SPECIFICATIONS.
3 Acids, Bases, and Buffers
Acid-Base Equilibria L.O.: To understand the difference between strong and weak acids. To be able to carry out calculations on strong and weak acids.
Title: Lesson 7: K a /pK a and K b /pK b Learning Objectives: – Understand the concepts of K a and K b – Understand the concepts of pK a and pK b.
C. Y. Yeung (CHW, 2009) p.01 Acid-Base Eqm (4): Buffer Solutions Q.:What is the new pH after addition of mol HCl at 298K? (assume no volume change)
Buffers. CH 3 COOH(aq) CH 3 COO¯(aq) + H + (aq) NH 3 (aq) + H 2 O(l) OH¯(aq) + NH 4 + (aq)
Buffers. A buffer is a solution whose pH is resistant to change on the addition of relatively small quantities of an acid or base. Buffers have the ability.
Buffers. What Are They? Solutions that resist changes in pH with addition of small amounts of acid or base Require two species: an acid to react with.
Chapter 17 – Equlibria Involving Acids and Bases.
Buffers Chem 12A Mrs. Kay. Buffers help maintain a constant pH. They are able to accept small quantities of acids and bases without drastically changing.
Buffers. Buffers are solutions that resist changes in pH when small amounts of acid or base are added, or when they are diluted.
8.3 Bases Similar to weak acids, weak bases react with water to a solution of ions at equilibrium. The general equation is: B(aq) + H2O(l)  HB+(aq) +
CONTENTS Brønsted-Lowry theory of acids and bases Lewis theory of acids and bases Strong acids and bases Weak acids Weak bases Hydrogen ion concentration.
Starter question. Consider propanoic acid (CH 3 CH 2 COOH) reacting with water….. 1. Write a symbol equation for the equilibrium that is established.
1081. y = 1.0 x M [OH - ] = 1.0 x M 1082.
General Chemistry II Acid and Base Equilibria Lecture 2
Week 21 © Pearson Education Ltd 2009 This document may have been altered from the original Describe what is meant by a buffer solution. State that a buffer.
BUFFER SOLUTIONS.
Common Ion Effect Buffers. Common Ion Effect Sometimes the equilibrium solutions have 2 ions in common For example if I mixed HF & NaF The main reaction.
Additional Aspects of Aqueous Equilibria. Roundtable problems P.757: 3, 6, 12, 14, 18, 24, 30, 38, 44, 50, 54, 56, 58, 64, 68, 70, 72, 103.
Applications of Aqueous Equilibria
Acid-Base Equilibria and Solubility Equilibria Chapter 16 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Function of the Conjugate Base The function of the acetate ion C 2 H 3 O 2  is to neutralize added H 3 O +. The acetic acid produced by the neutralization.
Buffers Calculating the pH of a buffer solution Worked example A buffer solution is made from 0.1moldm -3 ethanoic acid(CH 3 COOH) and 0.2moldm -3 sodium.
BUFFERS Mixture of an acid and its conjugate base. Buffer solution  resists change in pH when acids or bases are added or when dilution occurs. Mix: A.
ACID-BASE EQUILIBRIA AP CHEM CH 15. The Common Ion Effect The shift in equilibrium that occurs because of the addition of an ion already involved in the.
18.2 Buffers. Assessment Objectives Describe the composition of a buffer solution and explain its action Solve problems involving the composition.
Buffer and isotonic solution
What do they have in common?. And finally ….. BUFFERS.
Describe the composition of a buffer solution and explain its action.  What is a buffer solution?  It is an aqueous solution that resists a change.
HCOOH (aq) + H2O (l) ⇋ HCOO- (aq) + H3O+ (aq)
BUFFER SOLUTIONS A guide for A level students
Acids and Bases Buffers.
Acids and Bases (HL) - Lesson 9
BUFFER SOLUTIONS A guide for A level students
Complete table Calculate Kc with units if any A + B = 2C component A B
Acids, Bases, and Buffers
LO (Learning Objectives)
A2 Chemistry: F325 – Equilibria, Energetics and Elements
A guide for A level students KNOCKHARDY PUBLISHING
Questions What is a strong acid? What is a weak acid?
BUFFER SOLUTIONS What is a buffer solution? Definition
CALCULATING THE pH OF ACID/ALKALI MIXTURES
BUFFER SOLUTIONS A guide for A level students
BUFFER SOLUTIONS A guide for A level students
Buffers Year 12 Chemistry.
A Different Look At Buffers
Presentation transcript:

Starter 1) Write the expression and value of Kw [H+][OH-]kw 1x x x x x x x x x x x

Buffers Describe what is meant by a buffer solution. State that a buffer solution can be made from a weak acid and a salt of the weak acid. Explain the role of the conjugate acid–base pair in an acid buffer solution. Calculate the pH of a buffer solution from the K a value of a weak acid and the equilibrium concentrations of the conjugate acid–base pair.

A buffer solution is a mixture that minimises pH changes on addition of small amounts of acids and bases

Making a buffer solution from a weak acid and a salt of the weak acid

Shifting the buffer equilibrium

CH 3 COOH(aq) CH 3 COO¯(aq) + H + (aq)

Calculating the pH of an acidic buffer solution Calculate the pH of a buffer whose [HA] is 0.1 mol dm -3 and [A¯] of 0.1 mol dm -3. K a = [H + (aq)] [A¯(aq)] [HA(aq)] re-arrange [H + (aq)] = [HA(aq)] x K a [A¯(aq)]

Calculating the pH of an acidic buffer solution Calculate the pH of a buffer whose [HA] is 0.1 mol dm -3 and [A¯] of 0.1 mol dm -3. K a = [H + (aq)] [A¯(aq)] [HA(aq)] re-arrange [H + (aq)] = [HA(aq)] x K a [A¯(aq)] from information given[A¯] = 0.1 mol dm -3 [HA] = 0.1 mol dm -3

Calculating the pH of an acidic buffer solution Calculate the pH of a buffer whose [HA] is 0.1 mol dm -3 and [A¯] of 0.1 mol dm -3. K a = [H + (aq)] [A¯(aq)] [HA(aq)] re-arrange [H + (aq)] = [HA(aq)] x K a [A¯(aq)] from information given[A¯] = 0.1 mol dm -3 [HA] = 0.1 mol dm -3 If the K a of the weak acid HA is 2 x mol dm -3. [H + (aq)]= 0.1 x 2 x = 2 x mol dm

Calculating the pH of an acidic buffer solution Calculate the pH of a buffer whose [HA] is 0.1 mol dm -3 and [A¯] of 0.1 mol dm -3. K a = [H + (aq)] [A¯(aq)] [HA(aq)] re-arrange [H + (aq)] = [HA(aq)] x K a [A¯(aq)] from information given[A¯] = 0.1 mol dm -3 [HA] = 0.1 mol dm -3 If the K a of the weak acid HA is 2 x mol dm -3. [H + (aq)]= 0.1 x 2 x = 2 x mol dm pH= - log 10 [H + (aq)] = 3.699

Calculating the pH of an acidic buffer solution Calculate the pH of the solution formed when 500cm 3 of 0.1 mol dm -3 of weak acid HX is mixed with 500cm 3 of a 0.2 mol dm -3 solution of its salt NaX. K a = 4 x mol dm -3.

Calculating the pH of an acidic buffer solution Calculate the pH of the solution formed when 500cm 3 of 0.1 mol dm -3 of weak acid HX is mixed with 500cm 3 of a 0.2 mol dm -3 solution of its salt NaX. K a = 4 x mol dm -3. K a = [H + (aq)] [X¯(aq)] [HX(aq)]

Calculating the pH of an acidic buffer solution Calculate the pH of the solution formed when 500cm 3 of 0.1 mol dm -3 of weak acid HX is mixed with 500cm 3 of a 0.2 mol dm -3 solution of its salt NaX. K a = 4 x mol dm -3. K a = [H + (aq)] [X¯(aq)] [HX(aq)] re-arrange[H + (aq)] = [HX(aq)] K a [X¯(aq)]

Calculating the pH of an acidic buffer solution Calculate the pH of the solution formed when 500cm 3 of 0.1 mol dm -3 of weak acid HX is mixed with 500cm 3 of a 0.2 mol dm -3 solution of its salt NaX. K a = 4 x mol dm -3. K a = [H + (aq)] [X¯(aq)] [HX(aq)] re-arrange[H + (aq)] = [HX(aq)] K a [X¯(aq)] The solutions have been mixed; the volume is now 1 dm 3 therefore [HX] = 0.05 mol dm -3 and [X¯] = 0.10 mol dm -3

Calculating the pH of an acidic buffer solution Calculate the pH of the solution formed when 500cm 3 of 0.1 mol dm -3 of weak acid HX is mixed with 500cm 3 of a 0.2 mol dm -3 solution of its salt NaX. K a = 4 x mol dm -3. K a = [H + (aq)] [X¯(aq)] [HX(aq)] re-arrange[H + (aq)] = [HX(aq)] K a [X¯(aq)] The solutions have been mixed; the volume is now 1 dm 3 therefore [HX] = 0.05 mol dm -3 and [X¯] = 0.10 mol dm -3 Substituting[H + (aq)] = 0.05 x 4 x = 2 x mol dm pH= - log 10 [H + (aq)] = 4.699