FE-I4 pixel readout chip and IBL module Marlon Barbero Bonn University On behalf of ATLAS FE-I4 / IBL collaboration Vertex 2011 Workshop, Rust - Austria,

Slides:



Advertisements
Similar presentations
H1 SILICON DETECTORS PRESENT STATUS By Wolfgang Lange, DESY Zeuthen.
Advertisements

The ATLAS Pixel Detector
Token Bit Manager for the CMS Pixel Readout
Si Pixel Tracking Detectors Introduction Sensor Readout Chip Mechanical Issues Performance -Diamond.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
Fabian Hügging – University of Bonn – February WP3: Post processing and 3D Interconnection M. Barbero, L. Gonella, F. Hügging, H. Krüger and.
DEPFET Electronics Ivan Peric, Mannheim University.
Pierpaolo Valerio.  CLICpix is a hybrid pixel detector to be used as the CLIC vertex detector  Main features: ◦ small pixel pitch (25 μm), ◦ Simultaneous.
ATLAS Pixel Upgrade Phase 0 (IBL) ACES Workshop , CERN T. Flick University Wuppertal for the IBL collaboration.
The ATLAS Pixel Detector - Running Experience – Markus Keil – University of Geneva on behalf of the ATLAS Collaboration Vertex 2009 Putten, Netherlands,
FE-I4 Chip Design Marlon Barbero, Bonn University Vertex 2009, Putten, The Netherlands Feb. 17 th 2009.
The ATLAS Insertable B-Layer (IBL) Project C. Gemme, INFN Genova On behalf of the ATLAS IBL COllaboration RD11 Firenze July 2011.
2. Super KEKB Meeting, DEPFET Electronics DEPFET Readout and Control Electronics Ivan Peric, Peter Fischer, Christian Kreidl Heidelberg University.
From hybrids pixels to smart vertex detectors using 3D technologies 3D microelectronics technologies for trackers.
Wire Bonding and Analogue Readout ● Cold bump bonding is not easy ● Pixel chip is not reusable ● FE-I3 is not available at the moment ● FE-I4 is coming.
1 Digital Active Pixel Array (DAPA) for Vertex and Tracking Silicon Systems PROJECT G.Bashindzhagyan 1, N.Korotkova 1, R.Roeder 2, Chr.Schmidt 3, N.Sinev.
OVERVIEW OF THE PRE-FEI4 PROTOTYPE A. Mekkaoui On behalf of the FEI4 collaboration (BONN, CPPM, GENOVA, LBNL, NIKHEF)‏
1 G. Pellegrini The 9th LC-Spain meeting 8th "Trento" Workshop on Advanced Silicon Radiation Detectors 3D Double-Sided sensors for the CMS phase-2 vertex.
SLHC SG: ATLAS Pixel G. Darbo - INFN / Genova SLHC SG, July 2004 ATLAS Pixel at SLHC G. Darbo - INFN / Genova Talk overview: A table with different High.
Fully depleted MAPS: Pegasus and MIMOSA 33 Maciej Kachel, Wojciech Duliński PICSEL group, IPHC Strasbourg 1 For low energy X-ray applications.
Summary of CMS 3D pixel sensors R&D Enver Alagoz 1 On behalf of CMS 3D collaboration 1 Physics Department, Purdue University, West Lafayette, IN
Specifications & motivation 2  Lowering integration time would significantly reduce background  Lowering power would significantly reduce material budget.
Pixel 2000 Workshop Christian Grah University of Wuppertal June 2000, Genova O. Bäsken K.H.Becks.
Planar Pixels Sensors Activities in France. Phase-2 and core R&D activities in France -Development of sensor simulations models -Sensor technology Edgeless/active.
CBM workshop – GSI, April 18th – 20th A. Rivetti Pixel detector development for PANDA A.Rivetti INFN – Sezione di Torino.
Beam Tests of 3D Vertically Interconnected Prototypes Matthew Jones (Purdue University) Grzegorz Deptuch, Scott Holm, Ryan Rivera, Lorenzo Uplegger (FNAL)
Malte Backhaus – University of Bonn – ??/??/201?1 Approaching FLEX-test PrimList - Upcoming questions Malte Backhaus.
Thin Silicon R&D for LC applications D. Bortoletto Purdue University Status report Hybrid Pixel Detectors for LC.
PHASE-1B ACTIVITIES L. Demaria – INFN Torino. Introduction  The inner layer of the Phase 1 Pixel detector is exposed to very high level of irradiation.
AMS HVCMOS status Raimon Casanova Mohr 14/05/2015.
Valerio Re, Massimo Manghisoni Università di Bergamo and INFN, Pavia, Italy Jim Hoff, Abderrezak Mekkaoui, Raymond Yarema Fermi National Accelerator Laboratory.
Technology Overview or Challenges of Future High Energy Particle Detection Tomasz Hemperek
65 nm CMOS analog front-end for pixel detectors at the HL-LHC
UK Activities on pixels. Adrian Bevan 1, Jamie Crooks 2, Andrew Lintern 2, Andy Nichols 2, Marcel Stanitzki 2, Renato Turchetta 2, Fergus Wilson 2. 1 Queen.
ClicPix ideas and a first specification draft P. Valerio.
Thanushan Kugathasan, CERN Plans on ALPIDE development 02/12/2014, CERN.
BTeV Hybrid Pixels David Christian Fermilab July 10, 2006.
FE-I4 Chip Development for Upgraded ATLAS Pixel Detector at LHC Marlon Barbero, Bonn University (for the FE-I4 Collaboration) Pixel 2010, Grindelwald Switzerland,
Peter Fischer, Bonn UniversityPixel 2000, Genova, June 5-8, 2000 Pixel electronics for ATLAS Peter Fischer, Bonn university for the ATLAS pixel collaboration.
Pixel detector development: sensor
3D sensors for tracking detectors: present and future applications C. Gemme (INFN Genova) Vertex 2013, Lake Starnberg, Germany, September 2013 Outline:
15/09/20111 ATLAS IBL sensor qualification Jens Weingarten for the ATLAS IBL Collaboration (2 nd Institute Of Physics, Georg-August-Universität Göttingen)
Transition to cables Staves Services IP Underside of stave: IBL modules IBL Design.
SuperKEKB 3nd open meeting July 7-9, 2009 Hans-Günther Moser MPI für Physik Sensor and ASIC R&D Sensor Prototype Production: running, ASICs: Switcher,
The FE-I4 Pixel Readout System-on-Chip for ATLAS Experiment Upgrades Tomasz Hemperek on behalf of ATLAS Pixel Collaboration.
FE-I4 chip for ATLAS Mohsine Menouni, Marseille group on behalf of the ATLAS PIXEL Upgrade FE-I4 collaboration 8th International Meeting on Front-End Electronics.
Giulio Pellegrini 27th RD50 Workshop (CERN) 2-4 December 2015 Centro Nacional de MicroelectrónicaInstituto de Microelectrónica de Barcelona 1 Status of.
VMM Update Front End ASIC for the ATLAS Muon Upgrade V. Polychronakos BNL RD51 - V. Polychronakos, BNL10/15/131.
R. Kluit Nikhef Amsterdam R. Kluit Nikhef Amsterdam Gossopo3 3 rd Prototype of a front-end chip for 3D MPGD 1/27/20091GOSSIPPO3 prototype.
1 FANGS for BEAST J. Dingfelder, A. Eyring, Laura Mari, C. Marinas, D. Pohl University of Bonn
RD53 1.  Full/large demonstrator chip submission ◦ When: 2016 A.Early 2016: If chip must have been fully demonstrated in test beams for TDRs to be made.
Giulio Pellegrini Actividades 3D G. Pellegrini, C. Fleta, D. Quirion, JP Balbuena, D. Bassignana.
Ideas on MAPS design for ATLAS ITk. HV-MAPS challenges Fast signal Good signal over noise ratio (S/N). Radiation tolerance (various fluences) Resolution.
Hybrid CMOS strip detectors J. Dopke for the ATLAS strip CMOS group UK community meeting on CMOS sensors for particle tracking , Cosenors House,
Plans 2009/2010 CPPM 9 June 2009 A.Rozanov 1 Introduction Preparation FE-I4 Preparation FE-TC4-Proto Tests CPPM FE-I4-Proto Tests au PS CERN en 2009.
Comparison of the AC and DC coupled pixels sensors read out with FE-I4 electronics Gianluigi Casse*, Marko Milovanovic, Paul Dervan, Ilya Tsurin 22/06/20161.
Pixel Sensors for the Mu3e Detector Dirk Wiedner on behalf of Mu3e February Dirk Wiedner PSI 2/15.
FE-I4 Architecture & Performance Marlon Barbero, Universität Bonn 2 nd ATLAS CMS Electronics for SLHC, CERN Mar. 04 th 2009.
PIXEL 2000 P.Netchaeva INFN Genova 0 Results on 0.7% X0 thick Pixel Modules for the ATLAS Detector. INFN Genova: R.Beccherle, G.Darbo, G.Gagliardi, C.Gemme,
ATLAS Pixel Upgrade G. Darbo - INFN / Genova LHCC- CERN 1/76/2008 o Pixel/B-layer Developments LHCC Upgrade Session CERN, 1 / 7 / 2008 G. Darbo - INFN.
Valerio Re Università di Bergamo and INFN, Pavia, Italy
Digital FE-TC4-DC tier for 3D ATLAS pixel at sLHC
Pixel front-end development
FBK / INFN Roma, November , 17th 2009 G. Darbo - INFN / Genova
IBL Overview Darren Leung ~ 8/15/2013 ~ UW B305.
David Christian Fermilab October 18, 2016
OMEGAPIX 3D IC prototype for the ATLAS upgrade SLHC pixel project Journées VLSI 22th June, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
Vertex Detector Overview Prototypes R&D Plans Summary.
Operational Experience with the ATLAS Pixel Detector at the LHC
OmegaPix 3D IC prototype for the ATLAS upgrade SLHC pixel project 3D Meeting 19th March, 2010 A. Lounis, C. de La Taille, N. Seguin-Moreau, G.
Presentation transcript:

FE-I4 pixel readout chip and IBL module Marlon Barbero Bonn University On behalf of ATLAS FE-I4 / IBL collaboration Vertex 2011 Workshop, Rust - Austria, June 19 th - 24 th 2011

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Plan FE-I4: A new Front-End generation for the upgraded ATLAS pixel detector. IBL module concept. – Sensor technologies for IBL. – Flex. – Thin FE. Conclusion. Birth of FE-I4A

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd FE-I4 what for? Fast IBL (’13): inserted layer in current detector. Present beam pipe & B-Layer Existing B-layer New beam pipe IBL mounted on beam pipe r~37 mm - All Silicon. - Long Strips/ Short Strips / Pixels. - Pixels: - 2 or 3 fixed layers at ‘large’ radii (large area at 16 / 20 / 25 cms?) -2 removable layers at ‘small’ radii Phase1 tentative layout (>’17): 4- 5 pixel layers, small radii / large(r) radii (note: Discussion on boundary pixel / short strips, …). ATLAS Pixel Detector 3 barrel layers / 3 end-caps end-cap: z± 49.5 / 58 / 65 cm barrel: r~ 5.0 / 8.8 / 12.2 cm FE-I3 FE-I4 Di Girolamo, Monday

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd High hit rate FE-I3: All hits go to periphery (column drain architecture). Hit prob. / DC Inefficiency [%] LHC 3LHC sLHC FE-I3 at r=3.7 cm! The “inefficiency wall” All hits storage trigger data out FE-I4: local “in-pixel” storage + trigger propagated up the array. Trig’ed hits buffering trigger data out 160Mb/s in-pixel storage trigger disc. top left disc. bot. left disc. top right disc. bot. right 5 ToT memory /pixel 5 latency counter / region hit proc.: TS/sm/big/ToT Read & Trigger Neighbor Token L1TRead 4-Pixel Digital Region At 3 × LHC full lumi, ineff: ~0.6% 4-PDR other advantages: better active fraction (memory in array), low power (un-triggered hits do not move), spatial association.

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Digital Pixel: Regional Architecture local storage Store hits locally in region until L1T. Only 0.25% of pixel hits are shipped to EoC  DC bus traffic “low”. Each pixel is tied to its neighbors -time info- (clustered nature of real hits). Small hits are close to large hits! To record small hits, use position instead of time. Handle on TW. low traffic on DC bus Consequences: Spatial association of digital hit to recover lower analog performance. Lowers digital power consumption (below 10 μW / pixel at IBL occupancy). Physics simulation  Efficient architecture. 5 ToT memory /pixel 5 latency counter / region hit proc.: TS/sm/big/ToT Read & Trigger Token L1TRead 4-Pixel Region Neighbor Triggered data readout

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Process & granularity FE-I3: 0.25µm process, 50×400µm 2. Needed ELT for radiation-tolerance. Tolerant to 50MRad FE-I3, 250nm 50 μm 400 μm FE-I4: 130nm process, 50×250µm 2. Radiation hardness with minimal effort & substrate isolation (T3 well)  Can use standard synthesized cells! Tolerant to 250MRad. 8-metal layers, good power distribution  Can make big IC. 50  m 250  m synthezised digital region (1/4 th )

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Size of the IC & module concept FE-I3: 0.76×1.08cm 2. Active area: 74%. 2,880 pixel (18×160). 16-FE-I3 module with MCC Pixel array Periphery 10.8mm 7.6mm 2.8mm FE-I4: 2.02×1.88cm 2. Active area: ~90% 26,880 pixels (80×336) 2 ICs: Shared clk and cmd inputs. But each IC has dedicated output.  Simpler module concept! 20.2mm 18.8mm 2mm

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd pixel array: 336×80 pixels periphery digital 4-pix (PDR) analog 1-pix (FEND) 4-pixel regionEODCL DDC & DC PowerDOBEOCHLPadsCLKGENCMD DCDCNFGREGDACsCREFIOMux+ Bypass Overview 7

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd FE-I4A testing Upstream efficient test setup development (FE-I4 emulators) led to test main features of this complex chip in few months. All digital functionalities OK. 4-pixel digital region. Formatting + Data Transfer (EOCHL + DOB). Communication + memories. PLL for 160Mb/s data transfer. Yield ~65-70% Powering (Shunt-LDO) working ~specs. (Tuning for IBL on-going) USBpix RCE Single Chip Card

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Dose and noise Typical noise bare IC after calibration ~ 110e MeV proton irradiation at Los Alamos: – 6 / 75 / 200 MRad. Ratio noise after / before dose e.g. noise histogram calib ~×1.15

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Low threshold behavior Studies on PPS and 3D assemblies irradiated with protons to n eq /cm 2. Noise occupancy increase when below ~1500e -. At 1100 e -, NOcc~ Threshold down to 1100 electrons possible! Low threshold operation w. irradiated sensors demonstrated! Note: Masked pixel floor = digitally un-responsive pixels. Preliminary Malte Backhaus

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd IBL Sensor Specifications IBL environment: Radiation hard FE and sensor. For now, two different pixel sensor technology candidates: n- in-n planar / partial-3D silicon. Specifications: – HV: max 1000V. – Thickness: 225±25µm. – Max. power dissipation: 200mW/cm 2 at -15 o C. – No shingling in z  Edge width: below 450µm. – Tracking efficiency: above 98%. Choice for technology: Install Summer 2013  Sensor Prod. completed Summer 2012  Sensor choice in July Detailed schedule / Procurement: Pernegger Tuesday

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Chip Planar Sensor Tile Some R&D areas: – Slim edge sensors. – Radiation damage. – Low threshold FE-operation. – Low cost, large scale prod. Main advantage: – All benefits of a mature technology (yield, cost, experience). Main challenges: – Low Q collection after irrad, HV needed. – Inactive area at sensor edge. Wafer at CiS, Germany

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd IBL design choice for planar n-in-n 200 µm thick slim edge with ~200µm inactive edge. Thinner sensors generate more charge after n eq /cm 2 than thicker ones at same HV (higher field). Low material good for tracking + Constraints from safe processing at sensor provider + handling by flip-chipping provider  200µm thick sensor. ΔQcoll Macchiolo, Wednesday

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd IBL design choice for planar n-in-n 200 µm thick slim edge with ~200µm inactive edge. As guard ring opposite side from pixel implant, shift guard rings under active pixel region. Lose homogeneity at edge, but after irradiation Qcollection mainly from under pixel implant. 200µm long pixel 500µmpixel 250µm “standard“ Slim edge studies Test beam: >99% efficiency (pre-irrad) for 250µm inefficient edge from dedicated test structure Lounis, Wednesday

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Chip 3D Sensor Tile Wafer at CNM Spain / FBK Italy Some R&D areas: – Processing of TSV. – Yield. – Signal vs # electrodes / cell. Main advantage: – Radiation hardness. – Low depletion voltage (max 180V). – Active edge. Main challenges: – Production yield. – In-column inefficiency at normal incidence. FE-I4 SC

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd IBL design choice for 3D Double-Sided full passing 3D, 2E250 electrode configuration, slim edges: 2E250: Inter-electrode pitch ~70µm. Compromise between CCE and capacitive noise. Active edges & full 3D processing not established enough on project time scale. Giacomini, Wednesday

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd D charge collection High charge collection even at n eq /cm 2. FBK un-irrad. 98% eff for normal incidence  ~100% for tilted tracks April Desy TB Bates, Thursday

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Flex development Flex routes signals and supplies from FE/sensor to internal services(sensor: HV ; IC: LV, DCI, CLK, Dout, HitOr). Make loading on stave easy (alignment marks, area for pick- up), and testing of module too. 2 versions currently developed: Single-Chip or Double-Chip. Removable extension Wire bonding temp pads Wire bonding wing pads Wire bonding HV Wire bonding FE Temp connector Pickup area Ordered at Phoenix (Ivrea, Italy), back end June

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Thin Chip Bump-Bonding Glass support chip Thin IC (90 µm) Substrate Safe bump-bonding requires max bend ~15µm. Minimal thickness of 450µm. Use temporary glass handling wafer + laser de-bonding. Prelim test: promising! 8 single chip 150µ assemblies end June. Glass support removed Thin IC (90 µm) Substrate

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Conclusion Based on success of FE-I4A development, and characterization work of sensor communities. “Not much contingency” in schedule means success oriented developments. FE-I4B design: July Sensor choice: July IBL module R&D on-going: – Flex design. – Thin chip bump-bonding  fast track IBL with installation in 2013.

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Backup BACKUP

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Threshold tuning  Threshold before tuningThreshold after tuning PPS assembly

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Changes for FE-I4B FE-I4A issues to be fixed: – Calibration pulser output resistance. – SR readback. – Range of DACS. – Top row power. – Skipped trigger counter – Reset of EFUSE. – Array needs to be uniform: feedback cap, discri, SEU latch. New functions: – Add global ADC + temp sensing. – Change placement & ctrl of analog MUX. – 13-b BCID + BCR counter. – Event truncation. + fix powering!

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Analog Pixel In FE-I4_proto1 (FE-I4 prototype submitted in 2008): 2-stage architecture optimized for low power, low noise, fast rise time.  regul. casc. preamp. nmos input.  folded casc. 2 nd stage pmos input.  Additional gain, Cc/Cf2~6.  2 nd stage decoupled from leakage related DC potential shift.  Cf1~17fF (~4 MIPs dyn. range). 13b configuration:  4 FDAC: tuning feedback current.  5 TDAC: tuning of discriminator threshold.  2 Local charge injection circuitry.  1 HitEnable.  1 HitOr. 50  m 150  m Preamp Amp2 FDAC TDAC Config Logic discri

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Performance / Efficiency IBL: charge sharing in Z comparable to phi Memories SimulationAnalytical IBL10xLHCIBL10xLHC %2.19%0.029%2.25% %0.65%0.003%0.57% 7 <0.01%0.16%<0.01%0.13% η=0 Mean ToT = 4 0.6% Regional Buffer IBL rate, pile-up inefficiency is the dominant source of inefficiency Inefficiency: Pile-up inefficiency (related to pixel x-section and return to baseline behavior of analog pixel)  ~ 0.5%. Regional buffer overflow  ~0.05%. Inefficiency under control for IBL occupancy.

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Fixed format clustered data compression factor (all at 3×LHC) 3.7cm (vs. 21cm), η=0 indiv pixels: 4.09 (0.25)×( )= 1.00 (1.00)A.U. static 1×2: 3.45 (0.18)×(7+8+2×4+2)=0.96 (0.83) A.U. dynamic 1×2: 3.02 (0.15)×(7+9+2×4+2)= 0.87 (0.74) A.U. static 1×4: 2.86 (0.17)×(6+8+4×4+4)=1.08 (1.08) A.U. dyn. in-DC 1×4: 2.43 (0.15)×(6+9+4×4+4)= 0.95 (0.95) A.U. dynamic 1×4: 2.13 (0.14)×(7+9+4×4+4)= 0.85 (0.94) A.U. DC (×40) row (×336) column rowToT NL 10 6.count.FE -1.s -1 Choice: Dynamic phi-pairing (dynamic 1×2) merge neighbours and small hits in process. Compression ok, simple to do and good format, 24 bits (nice for FIFO and 8b10b). Note that hamming decoding needed before formatter.

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Metal stack and usage

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Threshold dispersion wrt dose

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Digital Region Power

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd ToT coding

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Noise and Radiation Results a)ENC on “Collaboration Proto 1” before and after irradiation (200 Mrad) b)Measured ENC for pixels with and without C load c)Simulated ENC and 10 µA/pixel (preamp-amp2-comparator) Low Current (10µA) (loaded ~400 fF) ~ 65 e ~ 90 e (10 µA) 200Mrad, C load ~400fF a) b) c) 20 ns timewalk for 2 ke - < Qin < 52 ke - & 1.5 ke - C d =0.4pF & I L =100nA ENC[e - ] C d [F] Q in [C] t LE [s] 100f200f300f k 20k30k40k I L = 0 nA 20n 10n 0 I L =100 nA

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Pixel Digital Region disc. in 5 ToT memory /pixel 5 latency counter / region hit proc.: TS/sm/big/ToT Read & Trigger Token L1TRead Digital Region N N N N Power ( 3.7cm 3xLHC full ): ~3-4µW / digital pixel (preliminary). Hit discrimination works Big SM Time walk compensation works Big SMn Big SMn Big

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd CLKGEN PLL Use as reference clock a clock where every second edge is delayed by 4ns. Reference Clock Δ4ns PLL 40MHz out Histograms of measured clock periods Reference Clock Δ5ns 160MHz CLKGEN output Reference Clock Δ4ns PLL 40MHz out 160MHz clock cleaned up!!!

36 Solder bumping IZM Flip-Chip

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Thin chip modules – Process flow ROC Wafer Wafer Thinning Temporary Wafer Bonding to support wafer Support Wafer Contact formation (Micro- Bumping) Support Wafer Dicing of Wafer Stack Support Chip Support Chip Release Bump Bonding Sensor Support Chip

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Flip Chip Assembly of Chip + Support FE-chip after bump bonding size 14x11 mm² (2x1 FE-I3) Cross section of the first bump row (yellow line) Substrate Glass support chip Thin IC (90 µm) Glass support chip Thin IC (90 µm) Substrate

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Support Chip Release via Laser Debonding Substrate Thin IC 1. 2.

Marlon Barbero, FE-I4 IC / IBL module, Vertex 2011, Rust Austria, June 23 rd Status thin FE-I4 modules at IZM 1 FE-I4 (AUN6NGH) wafer have thinned to 470 µm and has been used for 36 assemblies without any bump defects in the corners.  Demonstrate the minimum chip thickness of 450 µm. 1 st wafer (AWN6TUH) has been thinned to 150 µm, bumped and is currently being used for flip chip assemblies: – Already 5 assemblies (3D FBK from ATLAS 09) in our hands. – No support chip removal for these assemblies. – 16 more single chip assemblies have been flipped: 8 bad chips for adjusting laser parameters 8 good chips – 8 are currently at the laser debonding step in US, 8 more will go to another vendor (in Germany) in the next days.  Expected delivery in the next 2 weeks. – Up to 8 2-chip modules (depending on the number of available FE-I4 chips) will go to flip chip after the finishing of the 1 st devices 6 more FE-I4 wafers are currently in bump process: – 4 wafers with thickness of 150 µm – 2 wafers with thickness of 100 µm – UBM and bump deposition finished by mid June.