Spectroscopic Analysis of the mid-IR excesses of WDs Jana Bilikova 1 You-Hua Chu 1, Kate Su 2, Robert Gruendl 1, et al. 1 U. of Illinois at Urbana-Champaign,

Slides:



Advertisements
Similar presentations
Probing the Conditions for Planet Formation in Inner Protoplanetary Disks James Muzerolle.
Advertisements

Spitzer IRS Spectroscopy of IRAS-Discovered Debris Disks Christine H. Chen (NOAO) IRS Disks Team astro-ph/
A detailed 2D spectroscopic study of the Central Region of NGC 5253 Ana Monreal Ibero (1) José Vílchez (1), Jeremy Walsh (2), Casiana Muñoz-Tuñón (3) (1)
NGC 5128 – Centaurus A Dante Minniti ESO Vitacura Nov 2005.
1 Do post-common envelope objects form a distinct subset of PNe? David J. Frew Perth Observatory & Macquarie University Q.A. Parker and the MASH Collaboration.
The Nature and Origin of Molecular Knots in Planetary Nebulae Sarah Eyermann – U. of Missouri Angela Speck – U. of Missouri Margaret Meixner – STScI Peter.
18. August 2010EUROWD10, Tuebingen Two Planetary Nuclei with Recent Mass-Loss Events: V605 Aquilae & Longmore 4 Howard E. Bond Space Telescope Science.
Multi-band Infrared Mapping of the Galactic Nuclear Region Q. D. Wang (PI), H. Dong, D. Calzetti (Umass), Cotera (SETI), S. Stolovy, M. Muno, J. Mauerhan,
ASKAP Continuum Surveys of Local Galaxies Michael Brown ARC Future Fellow Monash University.
Portrait of a Forming Massive Protocluster: NGC6334 I(N) Todd Hunter (NRAO/North American ALMA Science Center) Collaborators: Crystal Brogan (NRAO) Ken.
Temporal variations of the circumstellar environment of the Mira star V Oph Keiichi Ohnaka Max-Planck-Institut für Radioastronomie ESO Santiago Seminar.
The MIR Template Spectrum of Star-Forming Galaxies A SINGS Perspective JD Smith.
UV to Mid-IR SEDs of Low Redshift Quasars Zhaohui Shang (Tianjin Normal University/University of Wyoming) Michael Brotherton, Danny Dale (University of.
CPD : the dust chemistry – binarity connection Orsola De Marco American Museum of Natural History New York.
Early results from the IRS Jim Houck and the IRS team - AAS Denver 6/1/04.
Spitzer Space Telescope Observations of the Fomalhaut Debris Disk Michael Werner, Karl Stapelfeldt, Chas Beichman (JPL); Kate Su, George Rieke, John Stansberry,
Post-AGB evolution. Learning outcome evolution from the tip of the AGB to the WD stage object types along the post-AGB evolution basics about planetary.
Although there are regions of the galaxy M33 which show both high density neutral hydrogen gas and 24 micron emission, high density gas does not always.
Hot Gas in Planetary Nebulae You-Hua Chu Robert A. Gruendl Martín A. Guerrero Univ. of Illinois.
IR Shell Surrounding the Pulsar Wind Nebula G SNRs and PWNe in the Chandra Era Boston, July 8, 2009 Tea Temim (CfA, Univ. of MN) Collaborators:
Binarity & Symbiotics Hugo E. Schwarz. Cerro Tololo Inter-American Observatory, NAOA/AURA.
Lecture 13: Projects October 5, Spitzer Space Telescope 0.85 meter infrared telescope Launched in August 2003 Cooled to ~1.5 K Warm (2009-); IRAC.
Structure of circumstellar envelope around AGB and post-AGB stars Dinh-V-Trung Sun Kwok, P.J. Chiu, M.Y. Wang, S. Muller, A. Lo, N. Hirano, M. Mariappan,
Institute for Astronomy and Astrophysics, University of Tübingen, Germany July 5, 2004Cool Stars, Stellar Systems and the Sun (Hamburg, Germany)1 Turning.
Nov PALM 3000 Requirements Review Imaging of Protoplanetary and Debris Disks Karl Stapelfeldt Jet Propulsion Laboratory.
X-ray Emission from PNe Martín A. Guerrero You-Hua Chu Robert A. Gruendl Univ. of Illinois APN III, Mt Rainier, 7/30/03.
Ge/Ay133 Disk Structure and Spectral Energy Distributions (SEDs)
U. Western Ontario Protoplanetary Disk Workshop, 19 May William Forrest (U of Rochester) Kyoung Hee Kim, Dan Watson, Ben Sargent (U. of R.) and.
Spitzer/IRS survey of heavily obscured planetary nebula precursors planetary nebula precursors D. A. García-Hernández (McDonald Observatory, UT, USA) J.
Margaret Meixner (STScI, JHU) March 7, 2013
Anyone Out There? Post-AGB Stars in the Galactic Halo S. Weston, R.Napiwotzki & S. Catalán University of Hertfordshire, UK.
Marginally Resolved Disks with Spitzer Bryden, Stapelfeldt, Tanner, Werner (JPL) Beichman (MSC) Rieke, Trilling, Stansberry, Su, & the MIPS instrument.
September 18, 2007Hydrogen-Deficient Stars, Tuebingen Transient Mass-Loss Events in the PG 1159  [WCE] Central Star of Longmore 4 Howard E. Bond Space.
Astrophysics from Space Lecture 8: Dusty starburst galaxies Prof. Dr. M. Baes (UGent) Prof. Dr. C. Waelkens (KUL) Academic year
L. Matrà 1,2, B. Merín 1, C. Alves de Oliveira 1, N. Huélamo 3, Á. Kóspál 4, N. L.J. Cox 5, Á. Ribas 1,3, E. Puga 1, R. Vavrek 1, P. Royer 5, T. Prusti.
Atomic Spectroscopy for Space Applications: Galactic Evolution l M. P. Ruffoni, J. C. Pickering, G. Nave, C. Allende-Prieto.
VLTI ’ s view on the circumstellar environment of cool evolved stars: EuroSummer School Observation and data reduction with the Very Large Telescope Interferometer.
STUDYING NEBULAE EJECTED FROM MASSIVE STARS WITH HERSCHEL Chloi Vamvatira-Nakou ARC meeting - 11 February 2010 Centre Spatiale de Liège (CSL) (PhD student.
Mid-infrared Spectral Evolution of Post-AGB Stars Kevin Volk, Gemini Observatory.
The VLTI view of compact dusty environments around evolved stars Olivier CHESNEAU Observatoire de la Côte d’Azur (OCA) F. Lykou, E. Lagadec, A. Zijlstra.
Modern Quasar SEDs Zhaohui Shang ( Tianjin Normal University ) Kunming, Feb
Modeling Planetary Systems Around Sun-like Stars Paper: Formation and Evolution of Planetary Systems: Cold Outer Disks Associated with Sun-like Stars,
Mid-IR Spectra of IRAS IRS 1 and IRS 3 M.F. Campbell 1,9,10, T.K. Sridharan 2,10, H. Beuther 3, J. H. Lacy 4, J.L. Hora 2, Q. Zhu 5, M. Kassis.
Schematic Picture of Region close to protostar From Matt & Pudritz (2005) disk envelope outflow.
Dusty disks in evolved stars?
A-Ran Lyo KASI (Korea Astronomy and Space Science Institute) Nagayoshi Ohashi, Charlie Qi, David J. Wilner, and Yu-Nung Su Transitional disk system of.
Magnetic fields in Planetary and Proto Planetary
Institute for Astronomy and Astrophysics, University of Tübingen 16 Aug th European White Dwarf Workshop Tübingen, Germany 1 HST / COS Spectroscopy.
The AU Mic Debris Ring Density profiles & Dust Dynamics J.-C. Augereau & H. Beust Grenoble Observatory (LAOG)
Astronomy 405 Solar System and ISM Lecture 14 Comets February 15, 2013.
Hydrodynamical Interpretation of Basic Nebular Structures
Bispectrum speckle interferometry of NGC 1068
Tübingen, Hydrogen-Deficient Stars1 O(He) Stars Thomas Rauch Elke Reiff Klaus Werner Jeffrey W. Kruk Institute for Astronomy and Astrophysics.
Hunting down the subdwarf populations Peter Nemeth Roy Østensen and Joris Vos KU Leuven, Belgium; In collaboration with Stephane Vennes and Adela Kawka.
Spitzer Surveys of IR Excesses of WDs Y.-H. Chu 1, R.A. Gruendl 1, J. Bilikova 1, A. Riddle 1, K. Su 2 1 Univ. of Illinois, 2 Univ. of Arizona.
How do galaxies accrete their mass? Quiescent and star - forming massive galaxies at high z Paola Santini THE ORIGIN OF GALAXIES: LESSONS FROM THE DISTANT.
Evolved Protoplanetary Disks: The Multiwavelength Picture Aurora Sicilia-Aguilar Th. Henning, J. Bouwman, A. Juhász, V. Roccatagliata, C. Dullemond, L.
Competitive Science with the WHT for Nearby Unresolved Galaxies Reynier Peletier Kapteyn Astronomical Institute Groningen.
The Cores to Disks Spitzer Legacy Science Project PI: Neal J. Evans II and the c2d Team Maryland Team: Mundy, Lai, Chapman and several UG students.
Lecture 10: Bubbles and PNe September 26, III. Conduction Layer - Probe the thermal conduction layer High ions produced by thermal collisions O.
Kate Su, George Rieke, Karl Misselt, John Stansberry, Amaya Moro-Martin, David Trilling… etc. (U. of A) Karl Stapelfeldt, Michael Werner (NASA JPL) Mark.
Observations of Bipolar planetary nebulae at 30 Micron Kentaro Asano (Univ.Tokyo) Takashi Miyata, Shigeyuki Sako, Takafumi Kamizuka, Tomohiko Nakamura,
Presented by: Suklima Guha Niyogi Leiden Observatory 13/02/2013 USING INFRARED OBSERVATIONS OF CIRCUMSTELLAR DUST AROUND EVOLVED STARS TO TEST DUST FORMATION.
Searching for circumnuclear molecular torus in Seyfert galaxy NGC 4945
from Central Stars of Planetary Nebulae
Young planetary systems
Nature and spectral variation of B-type emission-line stars with compact dusty envelopes:  HD 85567 and AS 386 Khokhlov Serik.
Infrared integral field spectroscopic observations of globules (cometary knots) in the Helix Nebula (NGC 7293) Mikako Matsuura National Astronomical Observatory.
9-10 Aprile Osservatorio Astronomico di Capodimonte
Dynamical trapping (pile-up) of grains near the sublimation radius
Presentation transcript:

Spectroscopic Analysis of the mid-IR excesses of WDs Jana Bilikova 1 You-Hua Chu 1, Kate Su 2, Robert Gruendl 1, et al. 1 U. of Illinois at Urbana-Champaign, 2 U. of Arizona

Spitzer MIPS 24 μm Survey of Hot WDs WD Name PN T eff (kK) F 24 (mJy) L IR /L * K1-22 K E-5 NGC 2438 NGC E-4 WD EGB E-5 WD E-6 WD Sh E-5 WD Sh E-6 WD Abell E-5 WD EGB E-4 WD E-5 WD Helix E-4

Spitzer Archival search Serch for CSPNs with IR excess 60 PNe examined 18 photometry carried out 6 show IR excess: NGC 6804, NGC 7139 NGC 2438, NGC 2346, NGC 6853, NGC 6905

Mid-IR emission of hot WDs

Possible Origins of IR Excesses Collisions of KBOs Binary evolution Compact nebulosity in born-again PNe

6 KPNO Echelle Spectra [OIII] HαHα Abell 30 NGC 2438 EGB 6 EGB 1 H-poor: feature in [OIII] does not show up in Hα All [OIII] features show H α counterparts Can eliminate the compact H-poor nebulosity scenario

Our dust disk model Optically thin Dust grains - silicates/amorphous carbon - sizes: n(a) ~ a a min set by β=F rad /F g of 0.5 (Artymowicz & Clampin 1997) - Q abs from Mie theory Uniform surface density

WD The closest CSPN Sh2-216 D=129 pc (Harris et al. 2007) 8 40’’ 5’

Sh model T eff = 95,000 K log g = 6.9 M = 0.55 M  L = 160 L  (Rauch et al. 2007) T eff = 95,000 K log g = 6.9 M = 0.55 M  L = 160 L  (Rauch et al. 2007) a min ~ um R ~ AU M = Mearth a min ~ um R ~ AU M = Mearth

CSPN K ’’ 2’’ HST has resolved a companion at 0.35’’ (~450 AU) from the CSPN (Ciardullo 1999). D = 1.33 kpc (Ciardullo 1999)

CSPN K1-22 model T eff = 141,000 K log g = 6.73 M = 0.59 M  (Rauch et al. 1999) L = 325 L  (phot) T eff = 141,000 K log g = 6.73 M = 0.59 M  (Rauch et al. 1999) L = 325 L  (phot) Kurucz model atm. T eff = 5,000 K M0V star Kurucz model atm. T eff = 5,000 K M0V star a min ~ 250 um R ~ sublim - 40 AU M = Mearth a min ~ 250 um R ~ sublim - 40 AU M = Mearth [O IV] [Ne III]

WD Distance = 650 pc (Napiwotzki 2001)

WD model T eff = 147,000 K log g = 7.34 M = 0.65 M  (Napiwotzki 2001) L = 480 L  (phot) T eff = 147,000 K log g = 7.34 M = 0.65 M  (Napiwotzki 2001) L = 480 L  (phot) a min ~ 340 um R ~ AU M = 0.14 Mearth a min ~ 340 um R ~ AU M = 0.14 Mearth

Beware! Detailed spectral shape of the WD matters - model atmospheres have more UV emission  hotter grains  disk properties - e.g. WD : ~480 Lsun, Rin ~ 200 AU ~1000 Lsun, Rin ~ 500 AU Distance matters - dist+phot  L WD  a min  disk properties - e.g. K1-22: d=1.33 kpc, L~300 Lsun d=3.4 kpc, L~1000 Lsun More complicatons

WD (EGB 6) Compact emission line source coincident with the CSPN (Fleming, Liebert, Green 1986) JHK excess (Fulbright & Liebert 1993) HST: A companion 0.18 ‘’ away (Bond 1994) IRAC, MIPS excess Featureless spectrum Su et al., in prep. KPNO echelle

CSPN NGC 6804 Spitzer MIPS 24 um Central emission line source Dust continuum, rising from J band We also see a silicate feature at 10 um. Gemini NIRI+Michelle

ORIGINS KBO collisions – Inner and outer edge (~100 AU) – Small dust mass (~0.1 Mearth) – Not too far for collisions (Dong et al.,Bonsor & Wyatt) Post-AGB binaries – Some CSPNs are binaries (maybe others hide a companion?) – CSPN stage right after post-AGB (do post-AGB binaries evolve into PNe?)

Conclusions Near and mid-IR excess is a good indicator of interesting phenomena Great variety among IR excesses – Near-IR excess only, mid-IR excess only, both – No emission lines, only emission lines, both – Featureless dust continuum, mineralogical features – Known companions, no companions Each needs to be studied in detail individually Stellar atmospheric models Stay tuned!