M&²y m&Ñiai[:  uRpidn (vF[y a[Tl[ S&>?  (bn-p\miNsr uRpidnni[ (nym  kdni ai(Y<k liBiliB uRpidn (vF[y (Production Function)

Slides:



Advertisements
Similar presentations
~) sRy sie aĦy&k[Sn T^AT s>ci(lt, ~)m(t e.ni.T[kriviLi u.mi.SiLi,s&rt nir) t& niriyN) a(Byinmi> aip sv[ hi(d ci(lt, ~)m(t e.ni.T[kriviLi u.mi.SiLi,s&rt.
Advertisements

Viers an[ b[kT[r)yi.
an[ ap&Nik C[. a[ ap&Nik a[ p&N< ni[ Big C.[
VitivrNmi> Yti[ f[rfir JvsZ(OT pr ke r)t[ asr kr[ C[?
rj&ait an[ s>klnkti d[rri[D,s&rt. mi[.n> :
R>g. m[GFn&Oy esik ºy&Tn ph[li[ a[vi[ v]Éiin)k hti[ j[N[ r>gi[ni[ p¹F(tsrni[ a¿yis kyi[ Y) p\kiSni[ S[rDi[ psir kr)n[ r>gi[ni[ a¿yis kyi[
vnAp(tni a>gi[ni[ a¿yis pr)cy b)j b)j f&l f&l fL fL m&L m&L p\ki>D p\ki>D pN pN
WA 2.ID 3.MT 4.OR 5.CA 6.NV 7.UT 8.WY 9.CO 10.AZ 11.NM 12.AK 13.HI 13 The West`
rj&ait an[ s>klnkti d[rri[D, s&rt. mi[.n> :
B[>k. piqni[ uÑ[S b[>k oiri p*r) piDvimi> aivt) s[viai[n) smj.
Gi>F): t[mn&> Jvn an[ Birtn) Avt>#itin) cLvL. mi[hndis k[. gi>F) gi>F)Jni[ jºm e.s mi> p(Åm Birtmi> h)>d& k&T&>bmi> Yyi[ hti[. t[ai[ jyir[ 13 vP
B$cni bh&v)F p\Æni[ni[ yi[³y uk[l nmcb_t) B$c.
hD¼pi s>AkZ(t e.s. p*v[< e.s. p*v[< 2400 mi[h[>ji[dDi[ ni m&²y ngri[
Proportions & Similar Triangles. Objectives/Assignments Use proportionality theorems to calculate segment lengths. To solve real-life problems, such as.
piq-9-ujiˆˆni A#ii[ti[ Fi[rN-7 (vOiy-(vXin an[ T[kni[li[J si[nl a[c Äyis.
mnn Si>(tni[ upiy: SiA#ii[
Birtn&> b>FirN  9 (Ds[., b>FirN sBin&> (v(Fvt ud`GiTn - Diƒ. s(µcdin>d (s>hi - aAYiy) a¹yx 11 (Ds[., Diƒ. rij[ºW p\sid - AYiy) a¹yx 13 (Ds[.,1946.
Gn, p\vih) an[ viy& ai p\krNni a>t[ tm[ S)KSi[:  pdiY< a[Tl[ S&?  g&NFmi[< a[Tl[ S&?  Gn, p\vih) an[ viy&ni g&NFmi[ C[.
C&>bkRv. pZ¸v) u_ir an[ d(xN c&b>k)y F&\vi[ Bi]gi[l)k u_ir an[ d(xN F\&vi[ pZ¸v)a[ a[k (vSiL c&>bk C[.
cili[ ÔN)a[ T^if)kni (nymi[ Bharat Chauhan 1 n)c[n) s>Xi S&> btiv[ C[ ? Bharat Chauhan 2 {1} jmN) bij& cQiN {2} jmN) bij&ni[ vLi>k {3} vihn jmN) bij&
A[(sD an[ b[ez a[(sD-b[ez tTAY)krN bfr a[(sD-b[ez an&mipn.
Dharamsinh Rathod Welcomes You
P&n:p\i¼y an[ p&n:ap\i¼y A#i[it. k&drt) A#i[it pZ¸v) pr ji[vi mLti dr[k sJv, hvi, piN) an[ jm)n t[mj t[l, k&drt) g[s an[ Kn)j j[ jm)nn) a>drY) mL[ C[.
(vXin g(Nt p\dS
M&²y m&Ñiai[:  Kc mh_v  Kc g[ni (v(vF ²yili[  (v(vF Kc b>Fi[  T*>kigiLi an[ li>bigiLimi> Kc b>Fi[
Mn&Oyn&> picnt>#i. mi[> an[ liLg\>Y)ai[ aºnnL) jqr Avid&p)>D nin&> ai>trD& mLiSy ykZt p)tiSy pkviSy mi[T&> ai>trD& nin&> ai>trD& mLoir.
Ak&l p\i[j[kT { g&jrit } Ak&l ki[-ai[(D- pi[- : visd ti-J- :aiN>d.
“ biLd[vi[ Bv ! ”ni m>#in[ sikir krvi Healthy Child Year n[ sfLtini (SKr[ le jea[...

12.5 Proportions & Similar Triangles. Triangle Proportionality Theorem If a line parallel to one side of a triangle intersects the other two sides, then.
k&drt pis[Y) mL[l) s>p(tn[ k&drt) s>p(t kh[ C[.
MD VT MA NH DC CT NJ RI DE WA
3.6 Literal Equations and Formulas
LESSON 10–3 Arcs and Chords.
Mathematical Induction
Train-the-Trainer Sessions 240 sessions with 8,187 participants
Existing laws requiring abortion clinics to meet surgical center standards and require abortion providers to have hospital privileges WY WIǂ WV WA VA VT.
cili[ ar)sin[ ai[LK)a[
Train-the-Trainer Sessions 384 sessions with 11,279 participants
Bi](tk an[ risiy(Nk f[rfiri[
Train-the-Trainer Sessions 379 sessions with 11,183 participants
مرتب سازي سريع Quicksort
Comprehensive Medicaid Managed Care Models in the States, 2014
Train-the-Trainer Sessions 386 sessions with 11,336 participants
Populations included in States’ SIMRs for Part C FFY 2013 ( )
Mobility Update and Discussion as of March 25, 2008
IAH CONVERSION: ELIGIBLE BENEFICIARIES BY STATE
619 Involvement in State SSIPs
Train-the-Trainer Sessions 362 sessions with 10,873 participants
HHGM CASE WEIGHTS Early/Late Mix (Weighted Average)
Train-the-Trainer Sessions 386 sessions with 11,336 participants
K&drt) A#i[it.
Train-the-Trainer Sessions 394 sessions with 11,460 participants
Train-the-Trainer Sessions 392 sessions with 11,432 participants
States including governance in their SSIP improvement strategies for Part C FFY 2013 ( ) States including governance in their SSIP improvement.
(map is coded by CAE-CD region)
I ;J\;J\ _\_\ -
S Co-Sponsors by State – May 23, 2014
Train-the-Trainer Sessions 396 sessions with 11,504 participants
Train-the-Trainer Sessions 402 sessions with 11,649 participants
Train-the-Trainer Sessions 402 sessions with 11,649 participants
Engineering Graphics I
States’ selected SIMRs for Part C FFY 2013 ( )
Train-the-Trainer Sessions 401 sessions with 11,639 participants
States including quality standards in their SSIP improvement strategies for Part C FFY 2013 ( ) States including quality standards in their SSIP.
States including their fiscal systems in their SSIP improvement strategies for Part C FFY 2013 ( ) States including their fiscal systems in their.
Train-the-Trainer Sessions 416 sessions with 11,878 participants
Train-the-Trainer Sessions 429 sessions with 12,141 participants
Train-the-Trainer Sessions 436 sessions with 12,254 participants
Train-the-Trainer Sessions 386 sessions with 11,336 participants
Presentation transcript:

m&²y m&Ñiai[:  uRpidn (vF[y a[Tl[ S&>?  (bn-p\miNsr uRpidnni[ (nym  kdni ai(Y<k liBiliB uRpidn (vF[y (Production Function)

uRpidn (vF[y a[ uRpidnni siFni[ an[ t[mni ¹viri Yti> uRpidn vµc[ni[ T[k`(nkl s>b>F dSi<v[ C[. p\i[. IATglrni mt m&jb, “uRpidn (vF[y ap uRpidk s[viai[ni ri[kiNni dr an[ uRpidnni dr vµc[ni[ s>b>F C[. Ai s>b>F S&¹F $p[ Bi](tk an[ T[k(nkl Av$pni[ C[ an[ t[n[ siFn tYi uRpidnn) (k>mt siY[ ki[e (nAbt nY). uRpidn (vF[yni[ a¿yis aip[li siFni[ an[ T[k`ni[li[J ¹viri mh_im uRpidn ke r)t[ m[Lv) Skiy t[n) siY[ s>b>F Friv[ C[.” sm)krN Av$pmi>, Q = f (x 1, x 2, x 3,... x n ) ah)>, Q = uRpidnni a[kmi[ x 1 = jm)nn&> p\miN, x 2 = ~mni> a[kmi[n&> p\miN, x 3 = m*D)ni a[kmi[n&> p\miN 1. uRpidn (vF[yn) Äyi²yi:

j&di-j&di aY j&di> p\kirni uRpidn (vF[yi[n&> pr)xN ky& C[. Ai bFi uRpidn (vF[yi[n[ b[ (vBigmi> vh[>c) Skiy. {1} a[k p\kirni uRpidn (vF[ymi> am&k uRpidnni siFni[[[n[ (Ayr riK)n[ aºy uRpidnni suFni[n&> p\miN f[rfir krvimi> aiv[ C[. {2} b)ji p\kirni uRpidn (vF[ymi> bFi> j siFni[n&> p\miN bdlit&> rh[ C[. uRpidn (vF[yn&> Av$p: {1} vFti vLtrn&> uRpidn (vF[y {2} IAYr vLtrn&> uRpidn (vF[y {3} Gtti vLtrn&> uRpidn (vF[y

uRpidn aYvi p[diS a>g[ni k[Tlik mh_vni ²yili[: {1} k&l uRpidn {p[diS}: aºy siFni[n&> p\miN IAYr riK)n[ ki[e a[k siFnni a[kmi[ ¹viri Yt&> k&l uRpidn. {2} sr[riS uRpidn: ki[e siFnn) a[km d)q p[diS {3} s)mi>t uRpidn: siFnni vFirini a[k a[kmni[ upyi[g krviY) k&l p[diSmi> Yy[li[ vFiri[. sr[riS p[diS = k&l uRpidn siFnni k&l a[kmi[ s)>mit uRpidn= k&l uRpidnmi> Yy[li[ fr[fir siFnni a[kmi[mi> Yy[li[ f[rfir

2. (bn-p\miNsr uRpidnni[ (nym (Law of Variable Proportions) ai (nym aY>SiA#ini (s¹Fi>ti[mi> a(t-mh_vn&> AYin Friv[ C[. ai (nym aipNn[ smj aip[ C[ k[ uRpidnni aºy siFni[n[ IAYr riK)n[ jyir[ ki[e a[k siFnni p\miNmi> f[rfir krvimi> aiv[ C[ Ryir[ k&l uRpidn pr t[n) S) asr Yiy C[. p\(SOT an[ nv p\S(OT aY ai nv&> nim C[. p\i[. J.j[ AT)glrni mt[ “aºy siFni[n&> p\miN (Ayr riK)m[ j[m j[m ki[e a[k siFnni a[kmi[mi> um[ri[ krvimi> aiv[ C[ Ryir[ am&k ci[kks (b>d& bid p[diSmi> Yti[ vFiri[ GTti[ jiy C[., a[Tl[ k[, s)mi>t p[diS GTt) jiy C[.

(bn p\miNsr uRpidnni (nymni> #iN pi>si C[. {1} vFt) p[diSni[ (nym- uRpidnni Bi](tk siFn p\miNmi> vFiri krti uRpidn p\miNmi> Yti[ vFiri[ vF& hi[y C[. {2} IAYr p[diSni[ (nym: uRpidn siFnni p\miNmi> vFiri an[ uRpidn p\miNmi> srKi[ vFiri[. {3} GTt) p[diSni[ (nym: uRpidni siFnmi> p\miN vFiri krti uRpidn p\miNmi> FTti dr[ vFiri[ Yiy. (bn-p\miNsr uRpidnni[ (nymn) FirNiai[: {1} tTAY uRpidn p¹F(t {2} am&k siFni[n&> p\miN IAYr riK) Skiy t[v&> hi[v&> ji[ea[. {3} aIAYr siFni[ni bFi a[kmi[ sming&N) hi[vi ji[ea[. {4} siFn-s>yi[jn p(rvt ji[ea[.

(bn-p\miNsr uRpidnn9 (nymn) ki[qi an[ aikZ(_i ¹viri smj*t) siFn s>yi[jn (Ayr siFnaIAYr siFn k&l p[diSs)mi>t p[diS sr[riS p[diS (nym 1 X vFt) p[diSni[ (nym 2 X X X X GTt) p[diSni[ (nym 6 X X X X X nkiriRmk p[diSni[ (nym

ki[OTk an[ aikZ(_i prY) k[Tli>k mh_vni m&Ñiai[ 1} s)mi>t p[diSmi> jyir[ vFiri[ Yti[ jiy C[. Ryir[ k&l p[diS vFti dr[ vF[ C[. {2} s)mi>t p[diS jyir[ S*ºy Yiy C[, Ryir[ p[diS mh_im hi[y C[. {3} s)mi>t p[diS jyir[ nkiriRmk bn[ Ryir[ k&l p[diS Gtvi mi>D[ C[. {4} s)mi>t p[diS jyi> s&F) vFt&> rh[ Ryi> s&F) sr[riS p[diS pN vF& hi[y C[. {5} s)mi>t p[diSmi> GTiDin) siYi[siY sr[riS p[diSmi> GTiDi[ Yiy C[. aiY) s)mi>t p[diSn) r[Ki sr[riS p[diSn) r[Kini mh_im (b>d&a[ C[d[ C[. I II II I sr[riS uRpidn s)mi>t uRpidn aIAYr siFni[ni a[kmi[ k&l uRpidn uRpidn

#iN tbkkiai[n) smj*t): {1} p\Ym t¾bki[: vFt) p[diSni[ tbkki[: k&l uRpidn, s)mi>t upidkn, sr[riS uRpidnmi> vFiri[ - s)mi>t p[diSn) r[Ki sr[riS uRpidm r[Kin) mh_im (b>d&a[ C[ {sr[riS uRpidn mh_im} j[ p\Ym tbkkini[ a>t – vFt) p[diSni m&²y b[ kirNi[ - - {1} uRpidnni siFnipn) a(vBijyti {2} ai>t(rk krksri[ j[v) k[ T[k`n)kl keksr, vh)vT) krkrsi[, niNi>k)y krksi[ vg[r[... {2} b)ji[ tbkki[: GTt) p[diSni[ tbkki[: uRpidn GTti dr[ vF[ C[ - s)mi>t uRpidn GTDi dr[ vF[ - k&l p[diS mh_im -s)mi>t p[dis S*ºy - b)ji bbkkini[ a>t - ai tbkkini m&²y kirNi[... {1} kdni g[r liB {2} uRpidnni siFni[n&> ap*N

{3} #i)ji[ tbkki[: nkiriRkim p[diSni[ tbkki[: k&l uRpidnm> GTiDi[ - s)mi>t p[diS äN bn[ C[ - sr[riS uRpidnmi> GTiDi[ -IAYr an[ aIAYr siFni[n) uRpidnmi> GTiDi[ {di.t – jm)nni pk T*kDi) uRpidkti}. vFt) p[diS an[ GTt) p[diS miT[ni kirNi[: {a} vFt) p[diS miT[ni m&²y kirNi[: {1} siFni[n) a(vBijyti {2} ~m (vbijn an[ (v(SIOT krNni liB {b} GTt) p[diS miT[ni kirNi[: {1} IAYr siFni[ni mh_im upyi[g pC)n) p(rIAY(t {2} aIAYr siFni[n) a(vBijyti {4} nkiriRmk p[diS miT[ni kirNi[: {1} IAYr siFn) t&lnimi> aIAYr siFni[n&> vF& p\miN {2} IAYr siFni[n) kiy<xmti pr (vpr)t asr

3. kdni ai(Y<k liBiliB: ai>t(rk krksri[: ai>t(rk krksrni liB j[ t[ p[Q)n[ mLti a>tg j[m j[m (vAtir Yiy C[ t[m t[m t[n[ k[Tl)k ci[kks krksri[ p\i¼t Yiy C[. ai krksri[n[ ai>t(rk krksri[ aYvi a[km- (vkisni liB kh[vimi> aiv[ C[. {1} T[kn)kl krksr {2} sL>g ji[DiNn) krksr[ {3} vh)vT) krksr {4} ni>Ni>k)y krksr {5} Kr)d v[ciNn) krksr {6} ji[Km GTiDin) krksr

kdni ai(Y<k liBiliB: biH krksri[: biH krksri[ a[ C[ k[ j[ni[ liB ki[e a[k p[Q) j n(h> pr>t& smg\ uwi[gmi>n) bF) j p[A)ai[n[ t[mj aºy uwi[gi[n[ pN mL[ C[. {1} vihn Äyvhir an[ s>d[Si Äyvhir {2} piN)n) svlti {4} (FriNn) svlti[ {3} T[kn)kl til)m an[ s>Si[Fn g[rliB: {1} am&k (b>d& pC) (v(vF p\(k\yin&> s>kln krv& m&Æk[l C[. {2} vh)vT) p\Åni[ up(AYt Yiy C[. {3} am&k (b>d& pC) (nONi>ti[ni a(Bp\iyi[ pN j&di pD[ C[.