Combinational Logic Design – Design Procedure, Encoders/Decoders

Slides:



Advertisements
Similar presentations
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Encoders.
Advertisements

Give qualifications of instructors: DAP
Princess Sumaya University
Combinational Circuits
Combinational Circuits
Functions and Functional Blocks
Decoders. Usage of Decoders Channel Selection: Generates Mutually Exclusive Channel Enabling/Disabling Signals (e.g. Multiplexers) Device Selection: Generates.
التصميم المنطقي Second Course
Overview Part 2 – Combinational Logic
CS 151 Digital Systems Design Lecture 17 Encoders and Decoders
Decoder.
Combinational Logic Building Blocks
EE2174: Digital Logic and Lab
DIGITAL SYSTEMS TCE OTHER COMBINATIONAL LOGIC CIRCUITS DECODERS ENCODERS.
Dewan Tanvir Ahmed SITE, UofO
ETE Digital Electronics Multiplexers, Decoders and Encoders [Lecture:10] Instructor: Sajib Roy Lecturer, ETE, ULAB.
Combinational Logic Chapter 4.
Outline Decoder Encoder Mux. Decoder Accepts a value and decodes it Output corresponds to value of n inputs Consists of: Inputs (n) Outputs (2 n, numbered.
CS 151: Digital Design Chapter 3 3-8: Encoding. CS 151 Encoding Encoding - the opposite of decoding - the conversion of a maximum of 2 n input code to.
Combinational Logic Design
Chapter 4-part 2 Combinational Logic. 4-6 DecimalAdder   Add twoBCD's   9 inputs: two BCD's and one carry-in 5 outputs: one BCD and one carry-out.
Chap 3. Chap 3. Combinational Logic Design. Chap Combinational Circuits l logic circuits for digital systems: combinational vs sequential l Combinational.
Dr. Ahmed El-Bialy, Dr. Sahar Fawzy Combinational Circuits Dr. Ahmed El-Bialy Dr. Sahar Fawzy.
Combinational Circuit – Arithmetic Circuit
©2004 Brooks/Cole FIGURES FOR CHAPTER 4 APPLICATIONS OF BOOLEAN ALGEBRA MINTERM AND MAXTERM EXPANSIONS Click the mouse to move to the next page. Use the.
WEEK #9 FUNCTIONS OF COMBINATIONAL LOGIC (DECODERS & MUX EXPANSION)
1 Combinational Logic Design Digital Computer Logic Kashif Bashir
Logical Circuit Design Week 6,7: Logic Design of Combinational Circuits Mentor Hamiti, MSc Office ,
Kuliah Rangkaian Digital Kuliah 6: Blok Pembangun Logika Kombinasional Teknik Komputer Universitas Gunadarma.
Multiplexers and Demultiplexers, and Encoders and Decoders
CSE221- Logic Design, Spring 2003
CS 105 DIGITAL LOGIC DESIGN Chapter 4 Combinational Logic 1.
Chapter 6 Know commonly used combinational subcircuits –Multiplexers –Decoders –Encoders Know VHDL constructs used to define combinational circuits.
CS151 Introduction to Digital Design
Chap 2. Combinational Logic Circuits
Hamming Code,Decoders and D,T-flip flops Prof. Sin-Min Lee Department of Computer Science.
Combinational Circuits by Dr. Amin Danial Asham. References  Digital Design 5 th Edition, Morris Mano.
ECEN 248: INTRODUCTION TO DIGITAL SYSTEMS DESIGN Lecture 7 Dr. Shi Dept. of Electrical and Computer Engineering.
Chapter Four Combinational Logic 1. Discrete quantities of information are represented in digital systems by binary codes. A binary code of n bits is.
1 CS 151: Digital Design Chapter 3: Combinational Logic Design 3-1Design Procedure CS 151: Digital Design.
CS151 Introduction to Digital Design Chapter 3: Combinational Logic Design 3-1 Design Procedure 1Created by: Ms.Amany AlSaleh.
Digital Systems Section 11 Decoders and Encoders.
Combinational Circuit Design. Digital Circuits Combinational CircuitsSequential Circuits Output is determined by current values of inputs only. Output.
Chapter 3: Combinational Functions and Circuits 3-5 to 3-7: Decoders
Module 11.  In Module 9, we have been introduced to the concept of combinational logic circuits through the examples of binary adders.  Meanwhile, in.
Digital System Design Multiplexers and Demultiplexers, and Encoders and Decoders.
CS151 Introduction to Digital Design Chapter 3: Combinational Logic Design 3-5 Combinational Functional Blocks 3-6 Rudimentary Logic Functions 3-7 Decoding.
XYZCS Designing Binary Adders with decoders C(X,Y,Z) =  m(3,5,6,7) S(X,Y,Z) = S m(1,2,4,7);
MSI Combinational logic circuits
Digital Design Module 2 Decoder Amit Kumar AP SCSE, GU Greater Noida.
1 DLD Lecture 16 More Multiplexers, Encoders and Decoders.
Chapter4: Combinational Logic Part 4 Originally By Reham S. Al-Majed Imam Muhammad Bin Saud University.
Decoders Zhijian John Wang. What are they? Overview of a decoder A device that reverses the process of an encoder Convert information from one format.
C OMBINATIONAL L OGIC D ESIGN 1 Eng.Maha AlGubali.
Decoder. 2 ABC 3:8 dec O0O0 O1O1 O2O2 A B C Enb S2S2 S1S1 S0S0 O3O3 O4O4 O5O5 O6O6 O7O7 EABC O0O0 O1O1 O2O2 O3O3 O4O4 O5O5 O6O6 O7O7 0XXX
Decoders A decoder is a logic circuit that detects the presence of a specific combination of bits at its input. Two simple decoders that detect the presence.
MSI Circuits.
Part 4 Combinational Logic.
Combinational Functions and Circuits
Lecture 4: Combinational Functions and Circuits
Reference: Chapter 3 Moris Mano 4th Edition
ECE 2110: Introduction to Digital Systems Chapter 6 Combinational Logic Design Practices Encoders.
Chapter 4 Combinational Logic
FIGURE 4.1 Block diagram of combinational circuit
Digital Systems Section 17 Decoders and Encoders.
ECE 331 – Digital System Design
Combinational Circuits
Chapter-4 Combinational Logic
Digital System Design Combinational Logic
Presentation transcript:

Combinational Logic Design – Design Procedure, Encoders/Decoders 2017/4/26 CHAPTER 4 Combinational Logic Design – Design Procedure, Encoders/Decoders (Sections 4.3 – 4.4) Chapter 4-ii: Combinational Logic Design (Sections 4.3 - 4.4)

Decoders A combinational circuit that converts binary information from n coded inputs to a maximum 2n coded outputs  n-to- 2n decoder n-to-m decoder, m ≤ 2n Examples: BCD-to-7-segment decoder, where n=4 and m=10

Decoders (cont.)

Decoders (cont.) Y0=(G’B’A’)’=G+B+A Y1=(G’B’A)’=G+B+A’ 74XX139 decoder

Decoders (cont.) Y0=(G’B’A’)’=G+B+A Y1=(G’B’A)’=G+B+A’

Decoders (cont.)

3-to-8 Decoder (cont.) Three inputs, A0, A1, A2, are decoded into eight outputs, Y0 through Y7 Each output Yi represents one of the minterms of the 3 input variables. Yi = 1 when the binary number A2A1A0 = i Shorthand: Yi = mi The output variables are mutually exclusive; exactly one output has the value 1 at any time, and the other seven are 0.

Decoders (cont.)

Decoders (cont.)

Decoders (cont.)

Implementing Boolean functions using decoders 2017/4/26 Implementing Boolean functions using decoders Y0’=(C’B’A’)’=m0’ Y1’=(C’B’A)’=m1’ Y2’=(C’BA’)’=m2’ Y3’=(C’BA)’=m3’ Y4’=(CB’A’)’=m4’ Y5’=(CB’A)’=m5’ Y6’=(CBA’)’=m6’ Y7’=(CBA)’=m7’ 一个N变量的二进制姨妈的输出包含了n个变量的所有最小项,例如,3线/8线译码器的8个输出包含了3个变量的最小项,如图所示,当使能端有效时,译码器处于译码状态,各输出端表达式为:{} 因此,应用n变量译码器实现逻辑函数时,可以首先将逻辑函数变换成最小项之和的标准形式,并在译码器输出端连接适当的与非门作输出级,就能获得任何形式的输入变量不大于n的组合逻辑函数 Chapter 4-ii: Combinational Logic Design (Sections 4.3 - 4.4)

Implementing Boolean functions using decoders E.g. use 74XX138,3-to-8 decoder to implement boolean functions Y1=A’B’+AC+A’C’ Y2=A’C+AC’ Y3=B’C+BC’

Implementing Boolean functions using decoders Y1=A’B’+AC+A’C’=m0+m1+m2+m5+m7 = (m0’m1’m2’m5’m7’)’ Y2=A’C+AC’= m1+m3+m4+m6 = (m1’m3’m4’m6’)’ Y3=B’C+BC’=m1+m2+m5+m6 = (m1’m2’m5’m6’)’

Implementing Boolean functions using decoders Y1= (m0’m1’m2’m5’m7’)’ Y2= (m1’m3’m4’m6’)’ Y3= (m1’m2’m5’m6’)’

Implementing Boolean functions using decoders Y1=A’B’+AC+A’C’=m0+m1+m2+m5+m7 =∑(0,1,2,5,7) =∏(3,4,6)=M3M4M6=m3’m4’m6’ Y2=A’C+AC’= m1+m3+m4+m6 =m0’m2’m5’m7’ Y3=B’C+BC’=m1+m2+m5+m6 =m0’m3’m4’m7’

Implementing Boolean functions using decoders Y1=m3’m4’m6’ Y2=m0’m2’m5’m7’ Y3=m0’m3’m4’m7’

Implementing Boolean functions using decoders e.g. X=f(a,b,c)=∑(0,3,5,6,7) =a’b’c’+ab+bc+ac

Implementing Boolean functions using decoders Here is another example: Recall full adder equations, and let X, Y, and Z be the inputs: S(X,Y,Z) = m(1,2,4,7) C (X,Y,Z) = m(3, 5, 6, 7). Since there are 3 inputs and a total of 8 minterms, we need a 3-to-8 decoder.

Implementing a Binary Adder Using a Decoder S(X,Y,Z) = Σm(1,2,4,7) C(X,Y,Z) = Σm(3,5,6,7)

Implementing a Binary Adder Using a Decoder Exe. Using decoders realize functions A=f(x,y,z)=∏(0,1,3,5) G=f(x,y,z)=∑(0,1,2,4,5,6,7)

Implementing a Binary Adder Using a Decoder A=f(x,y,z)=∏(0,1,3,5)

Implementing a Binary Adder Using a Decoder G=f(x,y,z)=∑(0,1,2,4,5,6,7) =∏(3)

Decoder Expansions Larger decoders can be constructed using a number of smaller ones. HIERARCHICAL design! Example: A 6-to-64 decoder can be designed using four 4-to-16 and one 2-to-4 decoders. How? (Hint: Use the 2-to-4 decoder to generate the enable signals to the four 4-to-16 decoders).

Decoder Expansions Two 74XX138 decoders forming a single 4-to-16 decoder(P131)

Decoder Expansions A 5-to-32 decoder using one 2-to-4 and four 3-to-8 decoder ICs(P132)

Decoder Expansions E.g. Using two 74XX138 decoders to realize a four-variable multiple output function(P133) P=f(w,x,y,z)=∑(1,4,8,13) Q=f(w,x,y,z)=∑(2,7,13,14)

Encoders An encoder is a digital circuit that performs the inverse operation of a decoder. An encoder has 2n input lines and n output lines. The output lines generate the binary equivalent of the input line whose value is 1.

Encoders (cont.)

Encoder Example Example: 8-to-3 binary encoder (octal-to-binary) A0 = D1 + D3 + D5 + D7 A1 = D2 + D3 + D6 + D7 A2 = D4 + D5 + D6 + D7

Encoder Example (cont.)

Priority Encoders Multiple asserted inputs are allowed; one has priority over all others.

Example: 4-to-2 Priority Encoder Truth Table

8-to-3 Priority Encoder A priority encoder

Uses of priority encoders (cont.)

Homework P178: 17.3, 17.4, 17.7, 17.8

TO BE CONTINUED