Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2.

Slides:



Advertisements
Similar presentations
Proposal for a new design of LumiCal R. Ingbir, P. Ruzicka, V. Vrba October 07 Malá Skála.
Advertisements

Mozaic trigger system for transverse momentum physics G.Vesztergombi, A.Agocs, B.Bozsogi, A.Fulop CBM Collaboration Meeting GSI – Dubna Oct, 2008.
Background effect to Vertex Detector and Impact parameter resolution T. Fujikawa(Tohoku Univ.) Feb LC Detector Meeting.
MICE TPG RECONSTRUCTION Tracking efficiency Olena Voloshyn Geneva University.
Simulation Studies of a (DEPFET) Vertex Detector for SuperBelle Ariane Frey, Max-Planck-Institut für Physik München Contents: Software framework Simulation.
Christian Steinle, University of Heidelberg, Institute of Computer Engineering1 L1 Hough Tracking on a Sony Playstation III Christian Steinle, Andreas.
Bill Atwood, Core Meeting, 9-Oct GLAS T 1 Finding and Fitting A Recast of Traditional GLAST Finding: Combo A Recast of the Kalman Filter Setting.
1 Forward Tracking Simulation Norman A. Graf ALCPG Cornell July 15, 2003.
Increasing Field Integral between Velo and TT S. Blusk Sept 02, 2009 SU Group Meeting.
Monte-Carlo simulations and reconstruction for 12-degree ep-elastic Luminosity Monitor A.Kiselev OLYMPUS Collaboration Meeting DESY, Hamburg,
STS Simulations Anna Kotynia 15 th CBM Collaboration Meeting April , 2010, GSI 1.
The LiC Detector Toy M. Valentan, M. Regler, R. Frühwirth Austrian Academy of Sciences Institute of High Energy Physics, Vienna InputSimulation ReconstructionOutput.
PPR meeting - January 23, 2003 Andrea Dainese 1 TPC tracking parameterization: a useful tool for simulation studies with large statistics Motivation Implementation.
Christian Steinle, University of Mannheim, Institute of Computer Engineering1 L1 Tracking – Status CBMROOT And Realisation Christian Steinle, Andreas Kugel,
KIP TRACKING IN MAGNETIC FIELD BASED ON THE CELLULAR AUTOMATON METHOD TRACKING IN MAGNETIC FIELD BASED ON THE CELLULAR AUTOMATON METHOD Ivan Kisel KIP,
Status of Fast Tracking Algorithm MdcHough Guowei YU 8 th March 2006.
Online Track Reconstruction in the CBM Experiment I. Kisel, I. Kulakov, I. Rostovtseva, M. Zyzak (for the CBM Collaboration) I. Kisel, I. Kulakov, I. Rostovtseva,
Pion test beam from KEK: momentum studies Data provided by Toho group: 2512 beam tracks D. Duchesneau April 27 th 2011 Track  x Track  y Base track positions.
Many-Core Scalability of the Online Event Reconstruction in the CBM Experiment Ivan Kisel GSI, Germany (for the CBM Collaboration) CHEP-2010 Taipei, October.
CBM Collaboration Meeting 1 Simulation Status V. Friese.
1 Tracking Reconstruction Norman A. Graf SLAC July 19, 2006.
Tracking at LHCb Introduction: Tracking Performance at LHCb Kalman Filter Technique Speed Optimization Status & Plans.
Faster tracking in hadron collider experiments  The problem  The solution  Conclusions Hans Drevermann (CERN) Nikos Konstantinidis ( Santa Cruz)
MdcPatRec Tracking Status Zhang Yao, Zhang Xueyao Shandong University.
Track Reconstruction: the trf & ftf toolkits Norman Graf (SLAC) ILD Software Meeting, DESY July 6, 2010.
STS track recognition by 3D track-following method Gennady Ososkov, A.Airiyan, A.Lebedev, S.Lebedev, E.Litvinenko Laboratory of Information Technologies.
Ooo Performance simulation studies of a realistic model of the CBM Silicon Tracking System Silicon Tracking for CBM Reconstructed URQMD event: central.
Fast reconstruction of tracks in the inner tracker of the CBM experiment Ivan Kisel (for the CBM Collaboration) Kirchhoff Institute of Physics University.
R&D for First Level Farm Hardware Processors Joachim Gläß Computer Engineering, University of Mannheim Contents –Overview of Processing Architecture –Requirements.
TRD and Global tracking Andrey Lebedev GSI, Darmstadt and LIT JINR, Dubna Gennady Ososkov LIT JINR, Dubna X CBM collaboration meeting Dresden, 27 September.
M. Deveaux, CBM collaboration meeting, Oct. 2008, Dubna, Russia A revision of the concept of the CBM – MVD Or: Do we need an intermediate pixel.
Impact parameter resolution study for ILC detector Tomoaki Fujikawa (Tohoku university) ACFA Workshop in Taipei Nov
CEA DSM Irfu 20 th october 2008 EuDet Annual Meeting Marie GELIN on behalf of IRFU – Saclay and IPHC - Strasbourg Zero Suppressed Digital Chip sensor for.
Summary STS working group Design optimization STS (Strip) layout R&D (MAPS) Working packages.
Status of Reconstruction in CBM
Design Criteria and Proposal for a CBM Trigger/DAQ Hardware Prototype Joachim Gläß Computer Engineering, University of Mannheim Contents –Requirements.
Standalone FLES Package for Event Reconstruction and Selection in CBM DPG Mainz, 21 March 2012 I. Kisel 1,2, I. Kulakov 1, M. Zyzak 1 (for the CBM.
Tracking, PID and primary vertex reconstruction in the ITS Elisabetta Crescio-INFN Torino.
G. Volpi - INFN Frascati ANIMMA Search for rare SM or predicted BSM processes push the colliders intensity to new frontiers Rare processes are overwhelmed.
Dmitri Ossetski Obninsk State University Department of Applied Mathematics
1 Open charm simulations ( D +, D 0,  + c ) Sts geometry: 2MAPS +6strip (Strasbourg geo) or 2M2H4S (D+ and D - at 25AGeV); TOOLS: signal (D +  K - 
Performance simulations with a realistic model of the CBM Silicon Tracking System Silicon tracking for CBM Number of integration components Ladders106.
Status Report particle identification with the RICH detector Claudia Höhne - GSI Darmstadt, Germany general overview focus on ring radius/ Cherenkov angle.
October 16, 2014Computer Vision Lecture 12: Image Segmentation II 1 Hough Transform The Hough transform is a very general technique for feature detection.
Track reconstruction in TRD and MUCH Andrey Lebedev Andrey Lebedev GSI, Darmstadt and LIT JINR, Dubna Gennady Ososkov Gennady Ososkov LIT JINR, Dubna.
Global Tracking for CBM Andrey Lebedev 1,2 Ivan Kisel 1 Gennady Ososkov 2 1 GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany 2 Laboratory.
Muon detection in the CBM experiment at FAIR Andrey Lebedev 1,2 Claudia Höhne 1 Ivan Kisel 1 Anna Kiseleva 3 Gennady Ososkov 2 1 GSI Helmholtzzentrum für.
Monday, January 24 TimeTitleSpeaker 10:00 – 10:30The CBM experimentV. Friese (GSI) 10:30 – 11:00CBM Silicon Pixel Vertex DetectorM. Deveaux (GSI/IReS)
CA+KF Track Reconstruction in the STS S. Gorbunov and I. Kisel GSI/KIP/LIT CBM Collaboration Meeting Dresden, September 26, 2007.
Vertex detector update 1 Oct Y. Sugimoto KEK.
The Detector Performance Study for the Barrel Section of the ATLAS Semiconductor Tracker (SCT) with Cosmic Rays Yoshikazu Nagai (Univ. of Tsukuba) For.
Development of the parallel TPC tracking Marian Ivanov CERN.
The SLHC CMS L1 Pixel Trigger & Detector Layout Wu, Jinyuan Fermilab April 2006.
Bo LI Kalman filter algorithm for tracking 2  Kalman filter prediction provides a good criterion for hit selection;  Kalman filter accumulates.
3 May 2003, LHC2003 Symposium, FermiLab Tracking Performance in LHCb, Jeroen van Tilburg 1 Tracking performance in LHCb Tracking Performance Jeroen van.
BESIII offline software group Status of BESIII Event Reconstruction System.
Tracking software of the BESIII drift chamber Linghui WU For the BESIII MDC software group.
NA62 Collaboration Meeting – Anacapri 1 September 2009 Massimiliano Fiorini CERN.
FPGA Helix Tracking Algorithm with STT Yutie Liang, Martin Galuska, Thomas Geßler, Wolfgang Kühn, Jens Sören Lange, David Münchow, Milan Wagner II. Physikalisches.
Track Reconstruction in MUCH and TRD Andrey Lebedev 1,2 Gennady Ososkov 2 1 Gesellschaft für Schwerionenforschung, Darmstadt, Germany 2 Laboratory of Information.
Torino, June 15 th, 2009 Status of the Pattern Recognition with the Hough transform and the STT system alone. Gianluigi Boca 1.
FPGA Helix Tracking Algorithm with STT
IPHC, Strasbourg / GSI, Darmstadt
Status of Hough Transform TPC Tracker
Kalman filter tracking library
M. Kuhn, P. Hopchev, M. Ferro-Luzzi
2018/6/15 The Fast Tracker Real Time Processor and Its Impact on the Muon Isolation, Tau & b-Jet Online Selections at ATLAS Francesco Crescioli1 1University.
Track Reconstruction Algorithms for the ALICE High-Level Trigger
Fast Track Fitting in the SiD01 Detector
The LHCb Level 1 trigger LHC Symposium, October 27, 2001
Presentation transcript:

Fast Tracking of Strip and MAPS Detectors Joachim Gläß Computer Engineering, University of Mannheim Target application is trigger  1. do it fast  2. check precision Contents –STS Tracking (Strip Detectors) Hough Transform –MAPS Tracking Kalman Filter October 7, 2004 CBM Collaboration Meeting

STS Tracking Hough Transform of Parabola x = z B y 2 P z = 0.3 B y z 2 2 x PzPz 1 = 0.3 B y (z cos  + x sin  ) 2 2 (z sin  – x cos  ) PzPz 1 rotated by  (P x /P z ): Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking 3-D Hough Transform 1/Pz Px/Pz Py/Pz Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering 3-D according to the three parameters of a track –bending 1/P z, angles  and  (P x /P z, P y /P z ) –P y /P z detector slice corresponds to one 2-D Hough-histogram –2-D Hough-histograms can be processed independently –P y /P z planes are overlapping ( due to multiple scattering)

STS Tracking Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Systolic processing of space points (1 hit/cycle) DQ CNT Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Systolic processing of space points (1 hit/cycle) DQ CNT Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Systolic processing of space points (1 hit/cycle) DQ CNT Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Systolic processing of space points (1 hit/cycle) one hit -> one curve Cell number of peak determines track parameters Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking Simulation Results Efficiency e: found tracks/all tracks with P > 1GeV/c g: ghost tracks/processed tracks i: identified tracks/processed tracks –31 x 95 x 383e: 95 %,g: 25 %,i: 45 % –63 x 191 x 255e: 93 %,g: 12 %,i: 65 % Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking Simulation Results Precision of the reconstructed momentum –63 x 191 x 255 Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking Hardware Implementation Processing speed (rough estimations) Real-time tracking (emphasis is on fast) –1 hit/cycle –e.g. 10 Gb/s link with 64 bit/hit => 150 x 10 6 hits/s 1 hit/cycle => 150 MHz –1500 to hits/event => 10µs to 100µs –total number of processing units ca. 200 x 10 Gb/s links needed for STS => ca. 200 units Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking of Strip Detectors Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start Processing of strip detector data one hit (x strip) -> one plane (horizontal) stop Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

STS Tracking of Strip Detectors Hardware Implementation hit coordinates x, z LUT shift registers 1 bit/row start stop Processing of strip detector data one hit (y strip) -> one plane (vertical) Logical AND gives same Hough Transform than intersection point of strips (+ all fakes given by strip layout) to do: angles other than 90°, especially small angles Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

MAPS layer 1 and 2 (monolithic active pixel sensors) –high resolution < 10 µm –slow readout > 10 µs pile up of ca. 100 events Kalman Filter track following –track hits from L3 – L5 as seed later Hough transform –emphasis is on fast: process 1 track/cycle 100 µm Si MAPS Tracking Kalman Filter Track Following Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering

y-z plane (non-bending) => straight line –y = m * z + c –start with m 0 = y 0 /z 0, c 0 =0 –predict position in previous layer y k = m k-1 * z k + c k-1 –measure position (distance predicted – real  y k ) –update estimate with measurement y k, m k, c k are simple function of m k-1, c k-1 and  y k  y k needs few bits to code noise and error covariance are chosen to „believe“ the latest measurement ^ ^ Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering MAPS Tracking Kalman Filter Track Following

x-z plane (magnetic field) => parabola –x = a z 2 + b z + c –start with a 0, b 0 from hits in layer 3, 4, 5 (or Hough-Transform), c 0 =0 –predict position in previous layer x k = a k-1 z k 2 + b k-1 z k + c k-1 –measure position (distance predicted – real  x k ) –update estimate with measurement x k, a k, b k, c k are simple functions of a k-1, b k-1, c k-1,  x k  x k needs few bits to code noise and error covariance are chosen to „believe“ the latest measurement ^ Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering ^ MAPS Tracking Kalman Filter Track Following

Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering no binning of data max distance 0.5 mm nearest hit as function of P Z tracks with lower momentum are worse w/o pileup –98% of nearest hits from same track with pileup –no missing hits –less hits from same track (ca. 10 %) MAPS Tracking Simulation Results

coefficients and parameters with 10 – 12 bit sufficient –no double precision floating point needed –old values -> LUTs -> adder -> LUT -> new value associative hit memory Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering hits from detector layer predicted position  x,  y of nearest hit MAPS Tracking Hardware Implementation

Summary Hough Transform –global algorithm –processing time ~ number of hits –possible implementation using FPGA and LUT –efficiency ca. 95% of tracks found –relatively high ghost rate –able to handle strip detectors Kalman Filter –MAPS pile up ca. 100 min. bias events –w/o pile up ca. 98% of nearest hits from same track –with pile up ca. 88% of nearest hits from same track ca. 12 % of nearest hits from other events –possible implementation using FPGA and LUT simple calculation associative hit memory Joachim Gläß, Univ. Mannheim, Institute of Computer Engineering