CSIE30300 Computer Architecture Unit 04: Basic MIPS Pipelining Hsin-Chou Chi [Adapted from material by and

Slides:



Advertisements
Similar presentations
PipelineCSCE430/830 Pipeline: Introduction CSCE430/830 Computer Architecture Lecturer: Prof. Hong Jiang Courtesy of Prof. Yifeng Zhu, U of Maine Fall,
Advertisements

1 IKI20210 Pengantar Organisasi Komputer Kuliah no. 25: Pipeline 10 Januari 2003 Bobby Nazief Johny Moningka
Chapter 8. Pipelining.
Review: Pipelining. Pipelining Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer takes 30 minutes Dryer.
Pipelining I (1) Fall 2005 Lecture 18: Pipelining I.
Pipelining Hwanmo Sung CS147 Presentation Professor Sin-Min Lee.
Computer Architecture
CS252/Patterson Lec 1.1 1/17/01 Pipelining: Its Natural! Laundry Example Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold Washer.
Mary Jane Irwin ( ) [Adapted from Computer Organization and Design,
ENEE350 Ankur Srivastava University of Maryland, College Park Based on Slides from Mary Jane Irwin ( )
Datorsystem 1 och Datorarkitektur 1 – föreläsning 10 måndag 19 November 2007.
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania Computer Organization Pipelined Processor Design 1.
Computer ArchitectureFall 2007 © October 24nd, 2007 Majd F. Sakr CS-447– Computer Architecture.
331 Lec18.1Fall :332:331 Computer Architecture and Assembly Language Fall 2003 Lecture 18 Introduction to Pipelined Datapath [Adapted from Dave.
CS 152 L10 Pipeline Intro (1)Fall 2004 © UC Regents CS152 – Computer Architecture and Engineering Fall 2004 Lecture 10: Basic MIPS Pipelining Review John.
Computer ArchitectureFall 2007 © October 22nd, 2007 Majd F. Sakr CS-447– Computer Architecture.
1 CSE SUNY New Paltz Chapter Six Enhancing Performance with Pipelining.
Pipelining Datapath Adapted from the lecture notes of Dr. John Kubiatowicz (UC Berkeley) and Hank Walker (TAMU)
1 COMP 206: Computer Architecture and Implementation Montek Singh Mon., Sep 9, 2002 Topic: Pipelining Basics.
1 Atanasoff–Berry Computer, built by Professor John Vincent Atanasoff and grad student Clifford Berry in the basement of the physics building at Iowa State.
Pipelining - II Adapted from CS 152C (UC Berkeley) lectures notes of Spring 2002.
Computer ArchitectureFall 2008 © October 6th, 2008 Majd F. Sakr CS-447– Computer Architecture.
CS 300 – Lecture 24 Intro to Computer Architecture / Assembly Language The LAST Lecture!
Prof. John Nestor ECE Department Lafayette College Easton, Pennsylvania ECE Computer Organization Lecture 17 - Pipelined.
Pipelining - II Rabi Mahapatra Adapted from CS 152C (UC Berkeley) lectures notes of Spring 2002.
Spring W :332:331 Computer Architecture and Assembly Language Spring 2005 Week 11 Introduction to Pipelined Datapath [Adapted from Dave Patterson’s.
Introduction to Pipelining Rabi Mahapatra Adapted from the lecture notes of Dr. John Kubiatowicz (UC Berkeley)
CS1104: Computer Organisation School of Computing National University of Singapore.
Computer Science Education
B 0000 Pipelining ENGR xD52 Eric VanWyk Fall
EEL5708 Lotzi Bölöni EEL 5708 High Performance Computer Architecture Pipelining.
Pipelining (I). Pipelining Example  Laundry Example  Four students have one load of clothes each to wash, dry, fold, and put away  Washer takes 30.
Analogy: Gotta Do Laundry
CSE431 Chapter 4A.1Irwin, PSU, 2008 CSE 431 Computer Architecture Fall 2008 Chapter 4A: The Processor, Part A Mary Jane Irwin ( )
CSE 340 Computer Architecture Summer 2014 Basic MIPS Pipelining Review.
Basic Pipelining & MIPS Pipelining Chapter 6 [Computer Organization and Design, © 2007 Patterson (UCB) & Hennessy (Stanford), & Slides Adapted from: Mary.
CS.305 Computer Architecture Enhancing Performance with Pipelining Adapted from Computer Organization and Design, Patterson & Hennessy, © 2005, and from.
Computer Organization CS224 Chapter 4 Part b The Processor Spring 2010 With thanks to M.J. Irwin, T. Fountain, D. Patterson, and J. Hennessy for some lecture.
CMPE 421 Parallel Computer Architecture
1 Designing a Pipelined Processor In this Chapter, we will study 1. Pipelined datapath 2. Pipelined control 3. Data Hazards 4. Forwarding 5. Branch Hazards.
Computer Architecture and Design – ELEN 350 Part 8 [Some slides adapted from M. Irwin, D. Paterson. D. Garcia and others]
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
ECE 232 L18.Pipeline.1 Adapted from Patterson 97 ©UCBCopyright 1998 Morgan Kaufmann Publishers ECE 232 Hardware Organization and Design Lecture 18 Pipelining.
CECS 440 Pipelining.1(c) 2014 – R. W. Allison [slides adapted from D. Patterson slides with additional credits to M.J. Irwin]

Cs 152 L1 3.1 DAP Fa97,  U.CB Pipelining Lessons °Pipelining doesn’t help latency of single task, it helps throughput of entire workload °Multiple tasks.
Chap 6.1 Computer Architecture Chapter 6 Enhancing Performance with Pipelining.
CMSC 611: Advanced Computer Architecture Pipelining Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted.
Pipelining CS365 Lecture 9. D. Barbara Pipeline CS465 2 Outline  Today’s topic  Pipelining is an implementation technique in which multiple instructions.
CS252/Patterson Lec 1.1 1/17/01 معماري کامپيوتر - درس نهم pipeline برگرفته از درس : Prof. David A. Patterson.
CSE431 L06 Basic MIPS Pipelining.1Irwin, PSU, 2005 MIPS Pipeline Datapath Modifications  What do we need to add/modify in our MIPS datapath? l State registers.
Lecture 9. MIPS Processor Design – Pipelined Processor Design #1 Prof. Taeweon Suh Computer Science Education Korea University 2010 R&E Computer System.
CMSC 611: Advanced Computer Architecture Pipelining Some material adapted from Mohamed Younis, UMBC CMSC 611 Spr 2003 course slides Some material adapted.
CSCI-365 Computer Organization Lecture Note: Some slides and/or pictures in the following are adapted from: Computer Organization and Design, Patterson.
Advanced Computer Architecture CS 704 Advanced Computer Architecture Lecture 10 Computer Hardware Design (Pipeline Datapath and Control Design) Prof. Dr.
Lecture 18: Pipelining I.
Computer Organization
Pipelines An overview of pipelining
Review: Instruction Set Evolution
CMSC 611: Advanced Computer Architecture
ECE232: Hardware Organization and Design
Chapter 4 The Processor Part 2
Lecturer: Alan Christopher
CS-447– Computer Architecture Lecture 14 Pipelining (2)
The Processor Lecture 3.6: Control Hazards
The Processor Lecture 3.4: Pipelining Datapath and Control
An Introduction to pipelining
Chapter 8. Pipelining.
Pipelining Appendix A and Chapter 3.
Presentation transcript:

CSIE30300 Computer Architecture Unit 04: Basic MIPS Pipelining Hsin-Chou Chi [Adapted from material by and

How Can We Make It Even Faster?  Split the multiple instruction cycle into smaller and smaller steps l There is a point of diminishing returns where as much time is spent loading the state registers as doing the work  Start fetching and executing the next instruction before the current one has completed l Pipelining – modern processors are pipelined for performance l Remember the performance equation: CPU time = CPI * CC * IC  Fetch (and execute) more than one instruction at a time l Superscalar processing – stay tuned

Inspiration: Automobile Assembly Line

Pipelining: Its Natural!  Laundry Example  Ann, Brian, Cathy, Dave each have one load of clothes to wash, dry, and fold  Washer takes 30 minutes  Dryer takes 40 minutes  “Folder” takes 20 minutes ABCD

Sequential Laundry  Sequential laundry takes 6 hours for 4 loads  If they learned pipelining, how long would laundry take? ABCD PM Midnight TaskOrderTaskOrder Time

Pipelined Laundry: Start Work ASAP  Pipelined laundry takes 3.5 hours for 4 loads ABCD 6 PM Midnight TaskOrderTaskOrder Time

A Pipelined MIPS Processor  Start the next instruction before the current one has completed l improves throughput - total amount of work done in a given time l instruction latency (execution time, delay time, response time - time from the start of an instruction to its completion) is not reduced Cycle 1Cycle 2Cycle 3Cycle 4Cycle 5 IFetchDecExecMemWB lw Cycle 7Cycle 6Cycle 8 sw IFetchDecExecMemWB R-type IFetchDecExecMemWB -clock cycle (pipeline stage time) is limited by the slowest stage -for some instructions, some stages are wasted cycles

Single Cycle, Multiple Cycle, vs. Pipeline Multiple Cycle Implementation: Clk Cycle 1 IFetchDecExecMemWB Cycle 2Cycle 3Cycle 4Cycle 5Cycle 6Cycle 7Cycle 8Cycle 9Cycle 10 IFetchDecExecMem lwsw IFetch R-type lw IFetchDecExecMemWB Pipeline Implementation: IFetchDecExecMemWB sw IFetchDecExecMemWB R-type Clk Single Cycle Implementation: lwsw Waste Cycle 1Cycle 2

MIPS Pipeline Datapath Modifications  What do we need to add/modify in our MIPS datapath? l State registers between each pipeline stage to isolate them

Pipelining the MIPS ISA  What makes it easy l all instructions are the same length (32 bits) -can fetch in the 1 st stage and decode in the 2 nd stage l few instruction formats (three) with symmetry across formats -can begin reading register file in 2 nd stage l memory operations can occur only in loads and stores -can use the execute stage to calculate memory addresses l each MIPS instruction writes at most one result (i.e., changes the machine state) and does so near the end of the pipeline (MEM and WB)  What makes it hard l structural hazards: what if we had only one memory? l control hazards: what about branches? l data hazards: what if an instruction’s input operands depend on the output of a previous instruction?

Graphically Representing MIPS Pipeline  Can help with answering questions like: l How many cycles does it take to execute this code? l What is the ALU doing during cycle 4? l Is there a hazard, why does it occur, and how can it be fixed? ALU IM Reg DMReg

Why Pipeline? For Performance! I n s t r. O r d e r Time (clock cycles) Inst 0 Inst 1 Inst 2 Inst 4 Inst 3 ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg Once the pipeline is full, one instruction is completed every cycle, so CPI = 1 Time to fill the pipeline

Can Pipelining Get Us Into Trouble?  Yes: Pipeline Hazards l structural hazards: attempt to use the same resource by two different instructions at the same time l data hazards: attempt to use data before it is ready -An instruction’s source operand(s) are produced by a prior instruction still in the pipeline l control hazards: attempt to make a decision about program control flow before the condition has been evaluated and the new PC target address calculated -branch instructions  Can always resolve hazards by waiting l pipeline control must detect the hazard l and take action to resolve hazards

I n s t r. O r d e r Time (clock cycles) lw Inst 1 Inst 2 Inst 4 Inst 3 ALU Mem Reg MemReg ALU Mem Reg MemReg ALU Mem Reg MemReg ALU Mem Reg MemReg ALU Mem Reg MemReg A Single Memory Would Be a Structural Hazard Reading data from memory Reading instruction from memory  Fix with separate instr and data memories (I$ and D$)

How About Register File Access? I n s t r. O r d e r Time (clock cycles) add $1, Inst 1 Inst 2 add $2,$1, ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg

How About Register File Access? I n s t r. O r d e r Time (clock cycles) Inst 1 Inst 2 ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg Fix register file access hazard by doing reads in the second half of the cycle and writes in the first half add $1, add $2,$1, clock edge that controls register writing clock edge that controls loading of pipeline state registers

Register Usage Can Cause Data Hazards I n s t r. O r d e r add $1, sub $4,$1,$5 and $6,$1,$7 xor $4,$1,$5 or $8,$1,$9 ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg  Dependencies backward in time cause hazards  Read before write data hazard

Register Usage Can Cause Data Hazards ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg  Dependencies backward in time cause hazards add $1, sub $4,$1,$5 and $6,$1,$7 xor $4,$1,$5 or $8,$1,$9  Read before write data hazard

Loads Can Cause Data Hazards I n s t r. O r d e r lw $1,4($2) sub $4,$1,$5 and $6,$1,$7 xor $4,$1,$5 or $8,$1,$9 ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg  Dependencies backward in time cause hazards  Load-use data hazard

stall One Way to “Fix” a Data Hazard I n s t r. O r d e r add $1, ALU IM Reg DMReg sub $4,$1,$5 and $6,$1,$7 ALU IM Reg DMReg ALU IM Reg DMReg Can fix data hazard by waiting – stall – but impacts CPI

Another Way to “Fix” a Data Hazard I n s t r. O r d e r add $1, ALU IM Reg DMReg sub $4,$1,$5 and $6,$1,$7 ALU IM Reg DMReg ALU IM Reg DMReg Fix data hazards by forwarding results as soon as they are available to where they are needed xor $4,$1,$5 or $8,$1,$9 ALU IM Reg DMReg ALU IM Reg DMReg

Another Way to “Fix” a Data Hazard ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg Fix data hazards by forwarding results as soon as they are available to where they are needed ALU IM Reg DMReg ALU IM Reg DMReg I n s t r. O r d e r add $1, sub $4,$1,$5 and $6,$1,$7 xor $4,$1,$5 or $8,$1,$9

Forwarding with Load-use Data Hazards I n s t r. O r d e r lw $1,4($2) sub $4,$1,$5 and $6,$1,$7 xor $4,$1,$5 or $8,$1,$9 ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg

Forwarding with Load-use Data Hazards ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg  Will still need one stall cycle even with forwarding I n s t r. O r d e r lw $1,4($2) sub $4,$1,$5 and $6,$1,$7 xor $4,$1,$5 or $8,$1,$9

Branch Instructions Cause Control Hazards I n s t r. O r d e r lw Inst 4 Inst 3 beq ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg ALU IM Reg DMReg  Dependencies backward in time cause hazards

stall One Way to “Fix” a Control Hazard I n s t r. O r d e r beq ALU IM Reg DMReg lw ALU IM Reg DMReg ALU Inst 3 IM Reg DM Fix branch hazard by waiting – stall – but affects CPI

Corrected Datapath to Save RegWrite Addr  Need to preserve the destination register address in the pipeline state registers

Corrected Datapath to Save RegWrite Addr  Need to preserve the destination register address in the pipeline state registers

MIPS Pipeline Control Path Modifications  All control signals can be determined during Decode l and held in the state registers between pipeline stages Control

Other Pipeline Structures Are Possible  What about the (slow) multiply operation? l Make the clock twice as slow or … l let it take two cycles (since it doesn’t use the DM stage) ALU IM Reg DMReg MUL ALU IM Reg DM1Reg DM2  What if the data memory access is twice as slow as the instruction memory? l make the clock twice as slow or … l let data memory access take two cycles (and keep the same clock rate)

Sample Pipeline Alternatives  ARM7  StrongARM-1  XScale ALU IM1 IM2 DM1 Reg DM2 IM Reg EX PC update IM access decode reg access ALU op DM access shift/rotate commit result (write back) ALU IM Reg DMReg SHFT PC update BTB access start IM access IM access decode reg 1 access shift/rotate reg 2 access ALU op start DM access exception DM write reg write

Summary  All modern day processors use pipelining  Pipelining doesn’t help latency of single task, it helps throughput of entire workload  Potential speedup: a CPI of 1 and fast a CC  Pipeline rate limited by slowest pipeline stage l Unbalanced pipe stages makes for inefficiencies l The time to “fill” pipeline and time to “drain” it can impact speedup for deep pipelines and short code runs  Must detect and resolve hazards l Stalling negatively affects CPI (makes CPI less than the ideal of 1)