Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Slides:



Advertisements
Similar presentations
Thermochemistry Chapter 6
Advertisements

Thermochemistry Chapter 6
Thermochemistry.
Calorimetry.
Thermochemistry Chapter 6
Standard Enthalpy (Ch_6.6) The heat change that results when 1 mole of a compound is formed from its elements at a pressure of 1 Atm.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Copyright©2000 by Houghton Mifflin Company. All rights reserved.
Thermochemistry Chapter 5. Heat - the transfer of thermal energy between two bodies that are at different temperatures Energy Changes in Chemical Reactions.
Thermochemistry Chapter 6. Energy is the capacity to do work. Radiant energy comes from the sun and is earth’s primary energy source Thermal energy is.
Thermochemistry Chapter 5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Energy Relationships in Chemical Reactions
Thermochemistry THERMOCHEMISTRY THERMOCHEMISTRY, is the study of the heat released or absorbed by chemical and physical changes. 1N = 1Kg.m/s 2, 1J =
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
1 Thermochemistry Chapter 7 CHEMISTRY - DMCU 1233 Fakulti Kejuruteraan Mekanikal, UTeM Lecturer: IMRAN SYAKIR BIN MOHAMAD MOHD HAIZAL BIN MOHD HUSIN NONA.
CHM 108 SUROVIEC SPRING 2014 Chapter 6 Energy Transfer.
Thermochemistry ENERGY CHANGES.. Energy is the capacity to do work Thermal energy is the energy associated with the random motion of atoms and molecules.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
A Comparison of  H and  E 2Na (s) + 2H 2 O (l) 2NaOH (aq) + H 2 (g)  H = kJ/mol  E =  H - P  V At 25 0 C, 1 mole H 2 = 24.5 L at 1 atm P 
Thermochemistry Chapters 6 and11. TWO Trends in Nature ___________  _________  _____ energy  ____ energy 
Thermochemistry Chapter 8.
Thermochemistry Chapter 6 Dr. Ali Bumajdad.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Presentation.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. PowerPoint Lecture Presentation.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 (semester ) 6.1 The Narure of Energy and Types of Energy 6.2 Energy Changes in Chemical Recations 6.3 Introduction to Thermodynamics.
Standard Enthalpy of Formation Chapter 5.5 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Energy & Rates.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6. Thermochemistry is the study of heat change in chemical reactions.
Chem10 Topic 01 - Thermochemistry Science 10 CT01D01.
THERMOCHEMISTRY. Thermochemistry Chapter 6 Definitions #1 Energy: The capacity to do work or produce heat Potential Energy: Energy due to position or.
Thermochemistry Exothermic process is any process that gives off heat – transfers thermal energy from the system to the surroundings. Endothermic process.
Energy Relationships in Chemical Reactions Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
Thermochemistry Chapters 6 and11 TWO Trends in Nature ____________  Disorder  ______ energy  ____ energy 
1 Thermochemistry Chapter 6. 2 Overview Introduce the nature of energy and the general topics related to energy problems. Familiarize with the experimental.
Thermochemistry Chapter 6. 2 Energy is the capacity to do work. Radiant energy comes from the sun and is earth’s primary energy source Thermal energy.
Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Acknowledgement Thanks to The McGraw-Hill.
Energy Relationships in Chemical Reactions
Thermochemistry Chapter 6
Energy Relationships in Chemical Reactions
Energy Relationships in Chemical Reactions
Thermochemistry Chapter 6
Copyright © Cengage Learning. All rights reserved
General Chemistry CHEM 101 Dr. Mohamed El-Newehy
Thermochemistry Chapter 8.
General Chemistry CHEM 101 (3+1+0).
General Chemistry CHEM 101 Dr. Mohamed El-Newehy
Chapter 5 Thermochemistry.
General Chemistry CHEM 101 (3+1+0).
General Chemistry CHEM 101 (3+1+0).
Thermochemistry Chapter 6
General Chemistry CHEM 101 (3+1+0).
General Chemistry CHEM 101 Dr. Mohamed El-Newehy
Chapter 4 Thermochemistry.
Thermochemistry Chapter 6
Chapter 4 Thermochemistry.
Thermochemistry Chapter 6
Thermochemistry ENERGY CHANGES ..
Thermochemistry Chapter 6
Thermochemistry Chapter 6
Thermochemistry Chapter 6
Thermochemistry Chapter 6
Thermochemistry Chapter 6.
Presentation transcript:

Thermochemistry Chapter 6 Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Energy is the capacity to do work __________ energy comes from the sun and is earth’s primary energy source __________ energy is the energy associated with the random motion of atoms and molecules __________ energy is the energy stored within the bonds of chemical substances __________ energy is the energy stored within the collection of neutrons and protons in the atom __________ energy is the energy available by virtue of an object’s position __________ energy is the energy available by virtue of an object’s motion 6.1

______ is the transfer of ____________ energy between two bodies that are at different temperatures. Energy Changes in Chemical Reactions ____________ is a measure of the thermal energy C 40 0 C greater thermal energy 6.2 Temperature = Thermal Energy

_______________________ is the study of heat change in chemical reactions. The ____________ is the specific part of the universe that is of interest in the study. open mass & energyExchange: closed energy isolated nothing 6.2

_______________ process is any process that gives off heat – transfers thermal energy from the system to the surroundings. _______________ process is any process in which heat has to be supplied to the system from the surroundings. 2H 2 (g) + O 2 (g) 2H 2 O (l) + energy H 2 O (g) H 2 O (l) + energy energy + 2HgO (s) 2Hg (l) + O 2 (g) 6.2 energy + H 2 O (s) H 2 O (l)

_______________ 6.2

_______________ is the scientific study of the interconversion of heat and other kinds of energy. _______________ _______________ are properties that are determined by the state of the system, regardless of how that condition was achieved. Potential energy of hiker 1 and hiker 2 is the same even though they took different paths. energy, pressure, volume, temperature 6.3  E = E final - E initial  P = P final - P initial  V = V final - V initial  T = T final - T initial

First law of _____________ – energy can be converted from one form to another, but cannot be created or destroyed.  E system +  E surroundings = 0 or  E system = -  E surroundings C 3 H 8 + 5O 2 3CO 2 + 4H 2 O Exothermic chemical reaction! 6.3 Chemical energy ____ by combustion = Energy _______ by the surroundings system surroundings

Another form of the first law for  E system 6.3  E = q + w  E is the change in internal energy of a system q is the heat exchange between the system and the surroundings w is the work done on (or by) the system w = -P  V when a gas expands against a constant external pressure

_______________ Done On the System 6.3 w = F x d w = -P  V P x V = x d 3 = F x d = w F d2d2  V > 0 -P  V < 0 w sys < 0 ____ is not a state function!  w = w final - w initial initialfinal

A sample of nitrogen gas expands in volume from 1.6 L to 5.4 L at constant temperature. What is the work done in joules if the gas expands (a) against a vacuum and (b) against a constant pressure of 3.7 atm? w = -P  V (a)  V = 5.4 L – 1.6 L = 3.8 L P = 0 atm W = -0 atm x 3.8 L = 0 Latm = ____ joules (b)  V = 5.4 L – 1.6 L = 3.8 L P = 3.7 atm w = -3.7 atm x 3.8 L = Latm w = Latm x J 1Latm = - _____ J 6.3

Chemistry in Action: Making Snow  E = q + w q = 0 w < 0,  E < 0  E = C  T  T < 0, SNOW!

Enthalpy and the First Law of Thermodynamics 6.4  E = q + w  E =  H - P  V  H =  E + P  V q =  H and w = -P  V At _________ pressure:

______________ (H) is used to quantify the heat flow into or out of a system in a process that occurs at constant pressure.  H = H (______) – H (_______)  H = heat given off or absorbed during a reaction at constant pressure H products < H reactants  H > 0 H products > H reactants  H < 0 6.4

Thermochemical Equations H 2 O (s) H 2 O (l)  H = 6.01 kJ Is  H negative or positive? System absorbs heat Endothermic  H > kJ are absorbed for every 1 mole of ice that melts at 0 0 C and 1 atm. 6.4

Thermochemical Equations CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O (l)  H = kJ Is  H negative or positive? System gives off heat Exothermic  H < kJ are released for every 1 mole of methane that is burned at 25 0 C and 1 atm. 6.4

H 2 O (s) H 2 O (l)  H = 6.01 kJ The stoichiometric coefficients always refer to the number of moles of a substance Thermochemical Equations If you reverse a reaction, the sign of  H changes H 2 O (l) H 2 O (s)  H = kJ If you multiply both sides of the equation by a factor n, then  H must change by the same factor n. 2H 2 O (s) 2H 2 O (l)  H = 2 x 6.01 = 12.0 kJ 6.4

H 2 O (s) H 2 O (l)  H = 6.01 kJ The physical states of all reactants and products must be specified in thermochemical equations. Thermochemical Equations 6.4 H 2 O (l) H 2 O (g)  H = 44.0 kJ How much heat is evolved when 266 g of white phosphorus (P 4 ) burn in air? P 4 (s) + 5O 2 (g) P 4 O 10 (s)  H = kJ 266 g P 4 1 mol P g P 4 x 3013 kJ 1 mol P 4 x = ______ kJ

A Comparison of  H and  E 2Na (s) + 2H 2 O (l) 2NaOH (aq) + H 2 (g)  H = kJ/mol  E =  H - P  V At 25 0 C, 1 mole H 2 = 24.5 L at 1 atm P  V = 1 atm x 24.5 L = 2.5 kJ  E = kJ/mol – 2.5 kJ/mol = ________ kJ/mol 6.4

The ______ __________ (s) of a substance is the amount of heat (q) required to raise the temperature of one gram of the substance by one degree Celsius. The ______ __________ (C) of a substance is the amount of heat (q) required to raise the temperature of a given quantity (m) of the substance by one degree Celsius. C = m x s Heat (q) absorbed or released: q = m x s x  t q = C x  t  t = t final - t initial 6.5

How much heat is given off when an 869 g iron bar cools from 94 0 C to 5 0 C? s of Fe = J/g 0 C  t = t final – t initial = 5 0 C – 94 0 C = ____ 0 C q = ms  t = 869 g x J/g 0 C x –89 0 C= ________ J 6.5

Constant-Volume Calorimetry No heat enters or leaves! q sys = q water + q bomb + q rxn q sys = 0 q rxn = - (q water + q bomb ) q water = m x s x  t q bomb = C bomb x  t 6.5 Reaction at Constant V  H ~ q rxn  H = q rxn

Constant-Pressure Calorimetry No heat enters or leaves! q sys = q water + q cal + q rxn q sys = 0 q rxn = - (q water + q cal ) q water = m x s x  t q cal = C cal x  t 6.5 Reaction at Constant P  H = q rxn

6.5

Chemistry in Action: Fuel Values of Foods and Other Substances C 6 H 12 O 6 (s) + 6O 2 (g) 6CO 2 (g) + 6H 2 O (l)  H = kJ/mol 1 cal = J 1 Cal = 1000 cal = 4184 J Substance  H combustion (kJ/g) Apple-2 Beef-8 Beer-1.5 Gasoline-34

Because there is no way to measure the absolute value of the enthalpy of a substance, must I measure the enthalpy change for every reaction of interest? Establish an arbitrary scale with the __________________ (  H 0 ) as a reference point for all enthalpy expressions. f __________________________ (  H 0 ) is the heat change that results when one _____ of a compound is formed from its _______________ at a pressure of __________. f The standard enthalpy of formation of any element in its most stable form is ____________.  H 0 (O 2 ) = 0 f  H 0 (O 3 ) = 142 kJ/mol f  H 0 (C, graphite) = 0 f  H 0 (C, diamond) = 1.90 kJ/mol f 6.6

The __________________________(  H 0 ) is the enthalpy of a reaction carried out at 1 atm. rxn aA + bB cC + dD H0H0 rxn d  H 0 (D) f c  H 0 (C) f = [+] - b  H 0 (B) f a  H 0 (A) f [+] H0H0 rxn n  H 0 (products) f =  m  H 0 (reactants) f  ________ Law: When reactants are converted to products, the change in enthalpy is the same whether the reaction takes place in one step or in a series of steps. (Enthalpy is a state function. It doesn’t matter how you get there, only where you _________________________.)

C (graphite) + 1/2O 2 (g) CO (g) CO (g) + 1/2O 2 (g) CO 2 (g) C (graphite) + O 2 (g) CO 2 (g) 6.6

Calculate the standard enthalpy of formation of CS 2 (l) given that: C (graphite) + O 2 (g) CO 2 (g)  H 0 = kJ rxn S (rhombic) + O 2 (g) SO 2 (g)  H 0 = kJ rxn CS 2 (l) + 3O 2 (g) CO 2 (g) + 2SO 2 (g)  H 0 = kJ rxn 1. Write the enthalpy of formation reaction for CS 2 C (graphite) + 2S (rhombic) CS 2 (l) 2. Add the given rxns so that the result is the desired rxn. rxn C (graphite) + O 2 (g) CO 2 (g)  H 0 = kJ 2S (rhombic) + 2O 2 (g) 2SO 2 (g)  H 0 = x2 kJ rxn CO 2 (g) + 2SO 2 (g) CS 2 (l) + 3O 2 (g)  H 0 = kJ rxn + C (graphite) + 2S (rhombic) CS 2 (l)  H 0 = (2x-296.1) = _____ kJ rxn 6.6

Benzene (C 6 H 6 ) burns in air to produce carbon dioxide and liquid water. How much heat is released per mole of benzene burned? The standard enthalpy of formation of benzene is kJ/mol. 2C 6 H 6 (l) + 15O 2 (g) 12CO 2 (g) + 6H 2 O (l) H0H0 rxn n  H 0 (products) f =  m  H 0 (reactants) f  - H0H0 rxn 6  H 0 (H 2 O) f 12  H 0 (CO 2 ) f = [+] - 2  H 0 (C 6 H 6 ) f [] H0H0 rxn = [ 12x– x–187.6 ] – [ 2x49.04 ] = ______ kJ 2 mol = __________ kJ/mol C 6 H 6 6.6

Chemistry in Action: Bombardier Beetle Defense C 6 H 4 (OH) 2 (aq) + H 2 O 2 (aq) C 6 H 4 O 2 (aq) + 2H 2 O (l)  H 0 = ? C 6 H 4 (OH) 2 (aq) C 6 H 4 O 2 (aq) + H 2 (g)  H 0 = 177 kJ/mol H 2 O 2 (aq) H 2 O (l) + ½O 2 (g)  H 0 = kJ/mol H 2 (g) + ½ O 2 (g) H 2 O (l)  H 0 = -286 kJ/mol  H 0 = – 286 = -204 kJ/mol Exothermic!

The ______________________ (  H soln ) is the heat generated or absorbed when a certain amount of solute dissolves in a certain amount of solvent.  H soln = H soln - H components 6.7 Which substance(s) could be used for melting ice? Which substance(s) could be used for a cold pack?

The Solution Process for NaCl  H soln = Step 1 + Step 2 = 788 – 784 = 4 kJ/mol 6.7