VMI images –fitting Helgi Rafn Hróðmarsson. The purpose of this fitting procedure is to check whether the assumption that the angular distribution data.

Slides:



Advertisements
Similar presentations
HBr, E(1), one-color, VMI KER spectra VMI, E(1) vs J´(=J´´)………………………………………2 Branching ratios……………………………………………………………..3-4 Prediction calculations……………………………………………………5.
Advertisements

Write an equation given the slope and a point
Ch 3.6: Variation of Parameters
Applications of photoelectron velocity map imaging at high resolution or Photoionization dynamics of NH 3 (B 1 E  ) Katharine L. Reid (Paul Hockett, Mick.
1: Straight Lines and Gradients © Christine Crisp “Teach A Level Maths” Vol. 1: AS Core Modules.
Variance and covariance M contains the mean Sums of squares General additive models.
1) HBr 1D (2+n)REMPI spectra simulations 2) Energy level shifts and intensity ratios for the F(v´=1) state agust,www,....Jan11/PPT ak.ppt agust,heima,....Jan11/XLS ak.xls.
HBr, F1D2, v´=1
II. Multi- photon excitation / ionization processes
Environmentally Conscious Design & Manufacturing (ME592) Date: May 8, 2000 Slide:1 Environmentally Conscious Design & Manufacturing Class 26: Data Dependent.
HBr, F 1  2, v´=1
HCl, f 3  2
© 2003 by Davi GeigerComputer Vision November 2003 L1.1 Tracking We are given a contour   with coordinates   ={x 1, x 2, …, x N } at the initial frame.
Bandwidth analysis of F 1 Δ, V 1 Σ & H 1 Σ states Helgi Rafn Hróðmarsson.
H35Cl, j(0+) intensity ratio analysis and comparison of experimental data agust,www,....Jan11/PPT ak.ppt agust,heima,...Jan11/Evaluation of coupling.
Electromagnetic Waves Electromagnetic waves are identical to mechanical waves with the exception that they do not require a medium for transmission.
Correlation and Regression Analysis
HBr, (updated ; slide 12) V(m+i) /HBr+(v+) spectra analysis
2.1 Solving First – Degree Equations BobsMathClass.Com Copyright © 2010 All Rights Reserved. 1 Equations An equation is a statement that two expressions.
5.1 Circles 1 The following are several definitions necessary for the understanding of circles. 1.) Circle - A set of points equidistant from a given fixed.
Graph the linear function What is the domain and the range of f?
Linear Regression Analysis Additional Reference: Applied Linear Regression Models – Neter, Kutner, Nachtsheim, Wasserman The lecture notes of Dr. Thomas.
Revisit vibrational Spectroscopy
Module 5 Parallel Lines and Perpendicular Lines. Key Concepts of a Line The graph of a linear function of the form y = mx + b is a straight line with.
Chem Structure Factors Until now, we have only typically considered reflections arising from planes in a hypothetical lattice containing one atom.
Inference for Regression Simple Linear Regression IPS Chapter 10.1 © 2009 W.H. Freeman and Company.
MOTION RELATIVE TO ROTATING AXES
Multiple Random Variables Two Discrete Random Variables –Joint pmf –Marginal pmf Two Continuous Random Variables –Joint Distribution (PDF) –Joint Density.
Regression Analysis Part C Confidence Intervals and Hypothesis Testing
DP Chemistry R. Slider. Rate Equation Recall that the rate of a reaction is a measure of the change in concentration of a reactant, R, (or product, P)
Plan for HBr VMI experiments in FORTH, autumn 2014 & progress -one and two-color experiments States to study……………………………………………….2-3 Rotational lines……………………………………………….4-5.
Eirík´s project(?) CH3I: agust,www,...rempi/ch3i/PPT ak.ppt ( )
PHOTOFRAGMENTATIONS, STATE INTERACTIONS AND ENERGETICS OF HALOGEN CONTAINING MOLECULES: TWO-DIMENSIONAL (2+n) REMPI ÁGÚST KVARAN, et al. Science Institute,
TWO-DIMENSIONAL (2+n) REMPI SPECTROSCOPY: STATE INTERACTIONS, PHOTOFRAGMENTATIONS AND ENERGETICS OF THE HYDROGEN HALIDES JINGMING LONG, HUASHENG WANG,
Copyright © 2009 Pearson Education, Inc. CHAPTER 1: Graphs, Functions, and Models 1.1 Introduction to Graphing 1.2 Functions and Graphs 1.3 Linear Functions,
The study of two previous papers in REMPI sepectra Jingming Long
Correlation & Regression Analysis
. 5.1 write linear equation in slope intercept form..5.2 use linear equations in slope –intercept form..5.3 write linear equation in point slope form..5.4.
Why the Spring Model Doesn’t Work The Abelian Group Edward Lee, Seonhee Kim, Adrian So.
HBr, Potential curve diagram for HBr and HBr + (See next slides):
Section 1.4 Equations of Lines and Modeling Copyright ©2013, 2009, 2006, 2001 Pearson Education, Inc.
Peterson xBSM Optics, Beam Size Calibration1 xBSM Beam Size Calibration Dan Peterson CesrTA general meeting introduction to the optics.
HBr, V(m+8), one-color, VMI One-color: KER spectra VMI, V(m+8) vs J´(=J´´)…………………………………2 Branching ratios……………………………………………………………..3-4 Angular distributions………………………………………………………5-7.
HBr, angular distribution analysis E(0) Updated,
Chapter 9 & 10 Differentiation Learning objectives: 123 DateEvidenceDateEvidenceDateEvidence Understand the term ‘derivative’ and how you can find gradients.
INTRODUCTION TO DYNAMICS ANALYSIS OF ROBOTS (Part 1)
Comparison of different VMI fitting formulas/procedures HRH – 29/7/14.
HBr, V(m+4) (and E(0)) (Updated ; slide: 24-6) 1)KER spectra vs J´ (slides 2-3) 2)I(H + + Br(1/2))/I(H + + Br(3/2)) vs. J´(slide 4) 3)Comparison.
Stats Methods at IC Lecture 3: Regression.
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
Graphs & Line (Curve) of Best Fit
CH3Br, one-color exp.: CHn+, iBr+ and CiBr+ ions vs CH3Br(Ry) states: Content: pages:
Warm Up Determine for y2 + xy + 3x = 9.
HBr, Angular distributions for V(m+i), i = 4-10; J´
ENERGY TRANSFER IN HBr + HBr AND HBr + He COLLISIONS
Writing Linear Functions
BASIC REGRESSION CONCEPTS
H(0), one-color, VMI and slicing images
Differentiate. f (x) = x 3e x
VMI-fitting results for V(m+i), i=4-10
6pp 3S- vs l / J´ Updated: One color, H+ detection: pages
Product moment correlation
CH3Br Negative particle detections; Electrons /PES:
HBr The cm-1 system (slides 2-16)
KER predictions for Br+ images
Find the area of the surface obtained by rotating the curve about the x-axis. {image} {image}
Find the area of the surface obtained by rotating the curve about the x-axis. {image}
6.1.1 Deriving OLS OLS is obtained by minimizing the sum of the square errors. This is done using the partial derivative 6.
Exponential Equations
Classical regression review
Presentation transcript:

VMI images –fitting Helgi Rafn Hróðmarsson

The purpose of this fitting procedure is to check whether the assumption that the angular distribution data can be fitted with an expression of both the two-photon excitation transition as well as the ionization pathway. (see slides 9 – 21 in )

i.e. something like:  f i ph f Experiment  (ph) (1) + A ~ -for red coloured parameters unknown => derive  (ph)

Previous fit functional form used by Dimitris Zaouris was I(  )= A(1 +  2 *(1.5*cos 2 (  )-0.5) The new fit equation (named „Ice fit“) is based on a two-step excitation scheme as formulated in slides 9 – 21 in : I(  )=A*(1+  2 (f) *(1.5*cos 2 (  )-0.5))*(1+  2 (ph) *(1.5*cos 2 (  )-0.5)) where A is a normalizing constant.  2 (f) = , obtained from REMPI data. (see slide 17 in  2 (ph) is the “beta-factor” for the ionization pathway.

E(v=0,J=1) – peak A – Ice fit 1

E(v=0,J=1) – peak B – Ice fit 1

Peaks (J=1)GreekIcelandic 1 A (A;  1;  2) 0,76118±0, ,45744±0,0283 0,86907±0, , ,1514±0,0345 B0,85873±0, ,37458±0,0126 0,89662±0, , ,33335±0,00962 C0,13704±0,0075 1,9112±0,173 0,17007±0, , ±0,17 D0,41475±0, ,7632±0,0399 0,52983±0, , ±0,14 E0,27321±0,0106 1,8038±0,12 0,3591±0, , ±0,192 F0,36161±0, ,5113±0,0651 0,46318±0,027 -0, ,9759±0,148 G0,39409±0, ,4896±0,0672 0,50614±0, , ,9828±0,131

E(v=0,J=2) – peak A – Ice Fit 1

E(v=0,J=2) – peak B – Ice fit 1

Peaks (J=2)GreekIcelandic 1 A (A;  1;  2) 0,76118±0, ,45744±0,0283 0,81307±0, , ,2773±0,0392 B0,87669±0, ,29162±0,0106 0,91825±0, , ,39804±0,0131 C0,17162±0,0121 2±0,227 0,23872±0, , ±0,45 D0,43901±0,0077 1,391±0,0492 0,46173±0, , ±0,30 E0,29792±0,0159 1,839±0,166 0,36734±0, , ±0,22 F0,15042±0, ,4516±0,0875 0,20227±0, , ±0,18 G0,43901±0,0077 1,391±0,0492 0,53567±0, , ,8482±0,0971

E(v=0,J=3) – peak A – Ice fit 1

E(v=0,J=3) – peak B – Ice fit 1

Peaks (J=3)GreekIcelandic 1 A (A;  1;  2) 0,87109±0,0104 0,18036±0,0267 0,97163±0, , ,91082±0,0262 B0,90372±0, ,17687±0,0182 0,97059±0, , ,56026±0,02 C D0,22624±0,0106 1,3921±0,131 0,31474±0, , ±0,10 E0,48809±0, , ±0,15 F0,3953±0,0146 1,2594±0,1 0,49898±0, , ,8438±0108 G0,49621±0,0177 1,0946±0,0939 0,63018±0, , ,7876±0,0531

E(v=0,J=4) – peak A – Ice fit 1

E(v=0,J=4) – peak B – Ice fit 1

Peaks (J=4)GreekIcelandic 1 A (A;  1;  2) 0,8717±0,0101 0,33282±0,0252 0,92483±0, , ,41919±0,0355 B0,66393±0, ,036446±0,024 0,72084±0, , ,69182±0,0156 C D0,61987±0, , ,939±0,101 E0,35438±0,0194 1,3384±0,152 0,44253±0, , ,8133±0,192 F0,50083±0,0149 1,2284±0,0803 0,65381±0, , ,8808±0,0984 G0,25361±0,0101 0,80411±0,099 0,32169±0, , ,6199±0,0873

E(v=0,J=5) – peak A – Ice fit 1

E(v=0,J=5) – peak B – Ice fit 1

Peaks (J=5)GreekIcelandic 1 A (A;  1;  2) 0,56496±0, ,17113±0,0285 0,60009±0, , ,521±0,0397 B0,90547±0, ,063685±0,0209 0,99436±0, , ,7879±0,0241 C D0,25092±0, , ±0,13 E0,1303±0, ,3471±0,159 0,16249±0, , ,8091±0,201 F0,26804±0, ,3276±0,0922 0,34558±0, , ,9056±0,121 G0,13687±0, ,0828±0,0722 0,17482±0, , ,7706±0,083

E(v=0,J=6) – peak A – Ice fit 1

E(v=0,J=5) – peak B – Ice fit 1

Peaks (J=6)GreekIcelandic 1 A (A;  1;  2) ±±±± 0,82007±0, , ,3087±0,02 B0,85371±0,094 0,25965±0,0249 0,96185±0, , ,98997±0,0247 C D0,55652±0, , ,9759±0,147 E0,46686±0,0224 1,1077±0,127 0,59043±0, , ,7602±0,121 F0,1392±0, ,0142±0,0811 0,17906±0, , ,7545±0,103 G0,41703±0,0184 0,97138±0,113 0,55327±0,026 -0, ,803±0,121

E(v=0,J=7) – peak A – Ice fit 1

E(v=0,J=7) – peak B – Ice fit 1

Peaks (J=7)GreekIcelandic 1 A (A;  1;  2) 0,81874±0, ,1475±0,0266 0,8855±0, , ,59888±0,0303 B0,85244±0,0103 0,19325±0,027 0,96448±0, , ,95905±0,0272 C D0,35768±0, , ,8061±0,119 E0,20043±0,0121 1,3719±0,168 0,2557±0, , ,8678±0,196 F0,56079±0,0224 0,96569±0,102 0,71665±0, , ,7332±0,0651 G0,47816±0,0227 0,92885±0,121 0,61749±0, , ,7435±0,0918

E(v=0,J=8) – peak A – Ice fit 1

E(v=0,J=8) – peak B – Ice fit 1

Peaks (J=8)GreekIcelandic 1 A (A;  1;  2) 0,85434±0, ,32847±0,0199 0,89395±0, , ,36528±0,0272 B0,61819±0, ,26281±0,0235 0,70103±0, , ,0059±0,032 C D0,48587±0, , ,8065±0,161 E0,050319±0, ,81428±0,178 0,06375±0, , ,5693±0,18 F0,37184±0, ,83385±0,0602 0,45401±0, , ,5277±0,0782 G0,53696±0,0225 0,98697±0,108 0,67354±0, , ,7095±0,0556

E(v=0,J=9) – peak A- Ice fit 1

E(v=0,J=9) – peak B- Ice fit 1

Peaks (J=9)GreekIcelandic 1 A (A;  1;  2) 0,7539±0, ,59057±0,0166 0,76278±0, , ,068452±0,0165 B0,8±0, ,23631±0,0225 0,90479±0, , ,98217±0,0304 C D0,29856±0, , ,6688±0,155 E0,10717±0, ,73928±0,172 0,12381±0,011 -0, ,2622±0,21 F0,25428±0,102 0,55248±0,0946 0,30221±0, , ,2887±0,109 G0,21671±0, ,78085±0,105 0,27046±0, , ,5698±0,0834

The Greek fit

The Icelandic fit  2 (ph)

Peak A angular distributions „Ice fit“:

Peak A – Intensity contour

Peak B angular distributions

Peak B – Intensity contour

Now to test another fit equation namely... I(  )=A*(1+  2 (f) *P 2 (cos(  4 (f) *P 4 (cos(  ))* (1+  2 (ph) *P 2 (cos(  4 (ph) *P 4 (cos(  )) I(  )=A*(1 +  2 (f) * (1.5 * cos 2 (  ) - 0.5) +  4 (f) * (1/8) * (35 * cos 4 (  ) – 30 * cos 2 (  ) + 3)) * (1 +  2 (ph) * (1.5 * cos 2 (  ) - 0.5) +  4 (ph) * (1/8) * (35 * cos 4 (  ) – 30 * cos 2 (  ) + 3)))...to try to get a better fit to the curves. Let’s try this fit of peak A and peak B. Again, as before, we keep  2 (ph) constant and we’ll be observant whether the  2 (f) constant stays about the same or it changes dramatically.

J=1 – Peak A

And comparison with the previous “Ice fit”.

E(v=0,J=1) – peak A – Ice fit 1

1) We get a better fit than before with more points from the edges of the scattering. 2) The  2 (f) constant changes from 1.15 to 1.28, i.e. not a gargantuan increase. 3) We also get values for the  4 (f) constant as well as  4 (ph) constant.

J=1 – Peak B

J=2 – Peak A

J=2 – Peak B

J=3 – Peak A

J=3 – Peak B

J=4 – Peak A

J=4 – Peak B

J=5 – Peak A

J=5 – Peak B

J=6 – Peak A

J=6 – Peak B

J=7 – Peak A

J=7 – Peak B

J=8 – Peak A

J=8 – Peak B

J=9 – Peak A

J=9 – Peak B

Beta2 (fit 1)Beta2 (fit 2)Beta4ph (fit 2)Beta4f (fit 2) J=1 – peak A1.15± ± ± ±0.06 J=1 – peak B0,33±0,010.31±0,010.04±0, ±0,02 J=2 – peak A1,28±0,041.39±0, ±0,020.34±0,06 J=2 – peak B0,40±0,010.41±0,010.06±0,020.01±0,03 J=3 – peak A0,91±0,030.91±0,030.11±0,030.00±0,06 J=3 – peak B0,56±0,020.59±0, ±0,030.16±0,06 J=4 – peak A0,42±0,040.32±0,040.21±0, ±0,15 J=4 – peak B0,69±0,020.72±0,020.06±0,020.05±0,03 J=5 – peak A0,52±0,040,51±0,040.19±0, ±0,11 J=5 – peak B0,79±0,020.87±0, ±0,030.22±0,09 J=6 – peak A0,31±0,020.34±0, ±0,030.12±0,06 J=6 – peak B0,99±0,021.04±0, ±0, ±0,02 J=7 – peak A0,60±0,030.56±0,030.09±0, ±0,08 J=7 – peak B0,96±0,030.98±0,030.02±0,020.15±0,05 J=8 – peak A0,37±0,030.35±0,050.11±0, ±0,12 J=8 – peak B1,01±0,031.05±0,020.05±0,010.18±0,03 J=9 – peak A0,07±0,020.02±0,020.13±0, ±0,09 J=9 – peak B0,98±0,030.99±0,020.12±0,020.08±0,05

A B Only small change in  2 (ph) compared to that for first „Ice fit“:  2 (ph)

The Icelandic fit  2 (ph)

All in all a)The vibrational peaks C – G involve almost purely Parallel photodissociation transition b)The H + + Br(1/2) formation (peak A) involves decreasing parallel/ increasing perpendicular photodissociation transition with J´. c) The H + + Br(3/2) formation (peak B) involves increasing parallel/ decreasing perpendicular photodissociation transition with J´. This can be compared with the predicted transitions, based on the comparison with HCl as shown on next slides (see also )

H* + Br (3/2) H + + Br - Ry V/Ion-pair [ 4 ,5s ] 3   H* + Br*(1/2) [ B 2  ].. H + Br**(5s) H + + Br (3/2)/Br*(1/2) HBr + (v + )(3/2,1/2) E1+E1+ V/ 1  + Peaks C-G: [2 2  ] 1  0, 3  0 

H* + Br (3/2) H + + Br - Ry V/Ion-pair [ 4 ,5s ] 3   H* + Br*(1/2) [2 2  ] 1  0, 3  0 [ B 2  ].. H + Br**(5s) H + + Br*(1/2) E1+E1+ V/ 1  + Peak A:  and  states involved

H* + Br (3/2) Ry V/Ion-pair [ 4 ,5s ] 3   H* + Br*(1/2) [ B 2  ].. H + Br**(5s) H + + Br(3/2) H + + Br - [2 2  ] 1  0, 3  0 Peak B: E1+E1+ V/ 1  +  and  states involved