Solving for Stereo Correspondence Many slides drawn from Lana Lazebnik, UIUC.

Slides:



Advertisements
Similar presentations
Lecture 11: Two-view geometry
Advertisements

11/06/14 How the Kinect Works Computational Photography Derek Hoiem, University of Illinois Photo frame-grabbed from:
Stereo Vision Reading: Chapter 11
Public Library, Stereoscopic Looking Room, Chicago, by Phillips, 1923.
Gratuitous Picture US Naval Artillery Rangefinder from World War I (1918)!!
Stereo Many slides adapted from Steve Seitz. Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image Where does the.
Stereo and Projective Structure from Motion
Recap from Previous Lecture Tone Mapping – Preserve local contrast or detail at the expense of large scale contrast. – Changing the brightness within.
Lecture 8: Stereo.
Stereo.
776 Computer Vision Jan-Michael Frahm, Enrique Dunn Spring 2012.
Last Time Pinhole camera model, projection
Multiple View Geometry : Computational Photography Alexei Efros, CMU, Fall 2005 © Martin Quinn …with a lot of slides stolen from Steve Seitz and.
Lecture 21: Multiple-view geometry and structure from motion
Stereo Binocular Stereo Calibration (finish up) Next Time Motivation
Stereopsis Mark Twain at Pool Table", no date, UCR Museum of Photography.
The plan for today Camera matrix
3D from multiple views : Rendering and Image Processing Alexei Efros …with a lot of slides stolen from Steve Seitz and Jianbo Shi.
Stereo and Structure from Motion
Stereo Computation using Iterative Graph-Cuts
Lecture 20: Two-view geometry CS6670: Computer Vision Noah Snavely.
Lec 21: Fundamental Matrix
CSE473/573 – Stereo Correspondence
Announcements PS3 Due Thursday PS4 Available today, due 4/17. Quiz 2 4/24.
Stereo Guest Lecture by Li Zhang
Project 1 artifact winners Project 2 questions Project 2 extra signup slots –Can take a second slot if you’d like Announcements.
Multiple View Geometry : Computational Photography Alexei Efros, CMU, Fall 2006 © Martin Quinn …with a lot of slides stolen from Steve Seitz and.
3-D Scene u u’u’ Study the mathematical relations between corresponding image points. “Corresponding” means originated from the same 3D point. Objective.
Epipolar Geometry and Stereo Vision Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 04/12/11 Many slides adapted from Lana Lazebnik,
Computer Vision Spring ,-685 Instructor: S. Narasimhan WH 5409 T-R 10:30am – 11:50am Lecture #15.
Stereo Readings Trucco & Verri, Chapter 7 –Read through 7.1, 7.2.1, 7.2.2, 7.3.1, 7.3.2, and 7.4, –The rest is optional. Single image stereogram,
12/01/11 How the Kinect Works Computational Photography Derek Hoiem, University of Illinois Photo frame-grabbed from:
Epipolar Geometry and Stereo Vision Computer Vision CS 543 / ECE 549 University of Illinois Derek Hoiem 03/05/15 Many slides adapted from Lana Lazebnik,
Computational Photography lecture 19 – How the Kinect 1 works? CS 590 Spring 2014 Prof. Alex Berg (Credits to many other folks on individual slides)
Announcements Project 1 artifact winners Project 2 questions
Structure from images. Calibration Review: Pinhole Camera.
Lecture 12 Stereo Reconstruction II Lecture 12 Stereo Reconstruction II Mata kuliah: T Computer Vision Tahun: 2010.
Recap from Monday Image Warping – Coordinate transforms – Linear transforms expressed in matrix form – Inverse transforms useful when synthesizing images.
Epipolar geometry Epipolar Plane Baseline Epipoles Epipolar Lines
Stereo Vision Reading: Chapter 11 Stereo matching computes depth from two or more images Subproblems: –Calibrating camera positions. –Finding all corresponding.
Stereo Readings Szeliski, Chapter 11 (through 11.5) Single image stereogram, by Niklas EenNiklas Een.
Stereo Many slides adapted from Steve Seitz.
Project 2 code & artifact due Friday Midterm out tomorrow (check your ), due next Fri Announcements TexPoint fonts used in EMF. Read the TexPoint.
Stereo Many slides adapted from Steve Seitz. Binocular stereo Given a calibrated binocular stereo pair, fuse it to produce a depth image image 1image.
Computer Vision, Robert Pless
Announcements Project 3 due Thursday by 11:59pm Demos on Friday; signup on CMS Prelim to be distributed in class Friday, due Wednesday by the beginning.
CSE 185 Introduction to Computer Vision Stereo. Taken at the same time or sequential in time stereo vision structure from motion optical flow Multiple.
CSE 576 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz
Lecture 16: Stereo CS4670 / 5670: Computer Vision Noah Snavely Single image stereogram, by Niklas EenNiklas Een.
stereo Outline : Remind class of 3d geometry Introduction
776 Computer Vision Jan-Michael Frahm Spring 2012.
11/05/15 How the Kinect Works Computational Photography Derek Hoiem, University of Illinois Photo frame-grabbed from:
Project 2 due today Project 3 out today Announcements TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAAA.
Project 3 code & artifact due Tuesday Final project proposals due noon Wed (by ) –One-page writeup (from project web page), specifying: »Your team.
Multiple View Geometry and Stereo. Overview Single camera geometry – Recap of Homogenous coordinates – Perspective projection model – Camera calibration.
CSE 185 Introduction to Computer Vision Stereo 2.
Stereo CS4670 / 5670: Computer Vision Noah Snavely Single image stereogram, by Niklas EenNiklas Een.
Noah Snavely, Zhengqi Li
Epipolar Geometry and Stereo Vision
제 5 장 스테레오.
Stereo CSE 455 Linda Shapiro.
CS4670 / 5670: Computer Vision Kavita Bala Lec 27: Stereo.
CSE 455 Ali Farhadi Several slides from Larry Zitnick and Steve Seitz
Stereo and Structure from Motion
How the Kinect Works Computational Photography
Thanks to Richard Szeliski and George Bebis for the use of some slides
What have we learned so far?
Computer Vision Stereo Vision.
Stereo vision Many slides adapted from Steve Seitz.
Presentation transcript:

Solving for Stereo Correspondence Many slides drawn from Lana Lazebnik, UIUC

Basic stereo matching algorithm For each pixel in the first image – Find corresponding epipolar line in the right image – Examine all pixels on the epipolar line and pick the best match – Triangulate the matches to get depth information

Simplest Case: Parallel images Image planes of cameras are parallel to each other and to the baseline Camera centers are at same height Focal lengths are the same

Simplest Case: Parallel images Image planes of cameras are parallel to each other and to the baseline Camera centers are at same height Focal lengths are the same Then epipolar lines fall along the horizontal scan lines of the images

Essential matrix for parallel images Epipolar constraint: R = I t = (T, 0, 0) The y-coordinates of corresponding points are the same! t x x’

Stereo image rectification Reproject image planes onto a common plane parallel to the line between optical centers Pixel motion is horizontal after this transformation Two homographies (3x3 transform), one for each input image reprojection C. Loop and Z. Zhang. Computing Rectifying Homographies for Stereo Vision. IEEE Conf. Computer Vision and Pattern Recognition, 1999.Computing Rectifying Homographies for Stereo Vision

Rectification example

Matching cost disparity LeftRight scanline Correspondence search Slide a window along the right scanline and compare contents of that window with the reference window in the left image Matching cost: SSD or normalized correlation

LeftRight scanline Correspondence search SSD

LeftRight scanline Correspondence search Norm. corr

Basic stereo matching algorithm If necessary, rectify the two stereo images to transform epipolar lines into scanlines For each pixel x in the first image – Find corresponding epipolar scanline in the right image – Examine all pixels on the scanline and pick the best match x’ – Compute disparity x–x’ and set depth(x) = B*f/(x–x’)

Failures of correspondence search Textureless surfaces Occlusions, repetition Non-Lambertian surfaces, specularities

Effect of window size – Smaller window + More detail More noise – Larger window + Smoother disparity maps Less detail W = 3W = 20

Results with window search Window-based matchingGround truth Data

Better methods exist... Graph cuts Ground truth For the latest and greatest: Y. Boykov, O. Veksler, and R. Zabih, Fast Approximate Energy Minimization via Graph Cuts, PAMI 2001Fast Approximate Energy Minimization via Graph Cuts

Labeling improved through label swap and expansion macro-moves

The two basic macro-moves

Each move is done by solving a graph cut problem