The Muscular System Slide 6.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscles are responsible for all types of body.

Slides:



Advertisements
Similar presentations
The Muscular System: Structure and Physiology
Advertisements

Chapter 6 The Muscular System
Chapter 6 The Muscular System
The Muscular System. Muscles are responsible for all types of body movement BECAUSE ……….! They contract – get shorter Three basic muscle types are found.
The Muscular System.
Chapter 6 The Muscular System
Chapter 6 The Muscular System
The Muscular System.
1. What are the three types of muscles found in the muscular system A. Skeletal, cardiac, muscle fibers B. Skeletal, cardiac, smooth C. Skeletal, smooth,
The Muscular System.
The Muscular System Three basic muscle types are found in the body
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Objective 3 Describe and diagram the microscopic structure of skeletal muscle fibers.
The Muscular System Essentials of Human Anatomy & Physiology
The Muscular System.
The Muscular System. MUSCULAR SYSTEM Types of Muscle Tissue: Skeletal, Smooth, and Cardiac Skeletal, aka “striated” voluntary – attached to bones and.
The Muscular System.
Muscular System Mahoney LHS 1/20/07.
Skeletal Muscle Characteristics
The Muscular System.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Muscle Contraction.
The Muscular System 1.
Exercise 14 Microscopic Anatomy, Organization, and
Muscle Types pgs Microscopic Anatomy of Skeletal Muscle pgs *emphasis will be placed on skeletal muscle.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings Muscle Types.
Musculo-Skeletal Anatomy Making the body move!. Goals Important muscle groups to know Review muscle functions, types, and general anatomy In-depth look.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Essentials of Anatomy and Physiology Fifth edition Seeley, Stephens and Tate Slide 2.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin.
Challenge Problem 1. From the article Tues, describe the disease FOP. 2. Write down 2 things you know about muscles. 3. How can you look like this guy?
PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.
Muscular System. Muscle Video Characteristics of Muscles Skeletal and smooth muscle cells are elongated (muscle cell = muscle fiber) Contraction of muscles.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Warm-Up Based on what you know about Latin root words, what do you think these terms refer to? Sarcomere Sarcoplasm Myofibril Epimysium Perimysium Endomysium.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.
The Muscular System Muscles are responsible for all types of body movement Three basic muscle types are found in the body Skeletal muscle Cardiac muscle.
Thursday, November 12, 2015 Put muscular worksheet in the blue basket Get a textbook Get a highlighter Get out paper & something to write with.
Chapter 6 The Muscle Anatomy. The Muscular System Functions  Movement  Maintain posture  Stabilize joints  Generate heat Three basic muscle types.
PowerPoint ® Lecture Slide Presentation by Patty Bostwick-Taylor, Florence-Darlington Technical College Copyright © 2009 Pearson Education, Inc., publishing.
Muscular Contraction.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
Section Sarcolemma- plasma membrane of a muscle fiber 2. Sarcoplasm- cytoplasm 3. Sarcoplasmic reticulum- smooth ER that stores Ca Myofibrils-
Muscle Structure Review & Physiology Adopted from Marieb’s A & P.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
ELAINE N. MARIEB EIGHTH EDITION 6 Copyright © 2006 Pearson Education, Inc., publishing as Benjamin Cummings PowerPoint ® Lecture Slide Presentation by.
Essentials of Human Anatomy & Physiology Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Slides 6.1 – 6.17 Seventh Edition Elaine.
The Muscular System.
The Muscular System.
Chapter 6 The Muscular System
Chapter 6 The Muscular System
Bell Ringer Three basic muscle types are found in the body
Chapter 6 The Muscular System
Chapter 6 The Muscular System
Chapter 6 The Muscular System
Essentials of Anatomy and Physiology
Chapter 6 The Muscular System
Chapter 8: Muscular System
The Muscular System.
Chapter 6 The Muscular System
Function of Muscles. Function of Muscles Characteristics of Muscles pg types: muscle cell = muscle fiber All muscles share some terminology Prefix.
Chapter 6 The Muscle Anatomy
The Muscular System.
Function of Muscles. Function of Muscles Characteristics of Muscles pg types: muscle cell = muscle fiber All muscles share some terminology Prefix.
Presentation transcript:

The Muscular System Slide 6.1 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscles are responsible for all types of body movement  Three basic muscle types are found in the body  Skeletal muscle  Cardiac muscle  Smooth muscle

Characteristics of Muscles Slide 6.2 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Muscle cells are elongated (muscle cell = muscle fiber)  Contraction of muscles is due to the movement of microfilaments  All muscles share some terminology  Prefix myo refers to muscle  Prefix mys refers to muscle  Prefix sarco refers to flesh

What type of muscle is this?

Skeletal Muscle Characteristics Slide 6.3 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Most are attached by tendons to bones  Cells are multinucleate  Striated – have visible banding  Voluntary – subject to conscious control  Cells are surrounded and bundled by connective tissue

Connective Tissue Wrappings of Skeletal Muscle Slide 6.4a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Endomysium – around single muscle fiber  Perimysium – around a fascicle (bundle) of fibers Figure 6.1

Connective Tissue Wrappings of Skeletal Muscle Slide 6.4b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Epimysium – covers the entire skeletal muscle  Fascia – on the outside of the epimysium (connective tissue) Figure 6.1

Skeletal Muscle Attachments Slide 6.5 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Epimysium blends into a connective tissue attachment  Tendon – cord-like structure  Aponeuroses – sheet-like structure  Not as vascularized as tendons  Sites of muscle attachment  Bones  Cartilages  Connective tissue coverings

What type of muscle is this?

Smooth Muscle Characteristics Slide 6.6 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Has no striations  Spindle-shaped cells  Single nucleus  Involuntary – no conscious control  Found mainly in the walls of hollow organs Figure 6.2a

What type of muscle is this?

Cardiac Muscle Characteristics Slide 6.7 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Has striations  Usually has a single nucleus  Joined to another muscle cell at an intercalated disc  Involuntary  Found only in the heart Figure 6.2b

Function of Muscles Slide 6.8 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Produce movement  Maintain posture  Stabilize joints  Generate heat

Microscopic Anatomy of Skeletal Muscle Slide 6.9a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Cells are multinucleate  Nuclei are just beneath the sarcolemma Figure 6.3a

Microscopic Anatomy of Skeletal Muscle Slide 6.9b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sarcolemma – specialized plasma membrane of muscle cells  Sarcoplasmic reticulum – specialized smooth endoplasmic reticulum Figure 6.3a

Sarcoplasmic Reticulum Interconnecting tubules and sacs Stores calcium to release when muscle fiber is stimulated to contract

Microscopic Anatomy of Skeletal Muscle Slide 6.10a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Myofibril  Bundles of myofilaments  Myofibrils are aligned to give distinct bands  I band = light band  A band = dark band Figure 6.3b

Microscopic Anatomy of Skeletal Muscle Slide 6.10b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sarcomere  Contractile unit of a muscle fiber Figure 6.3b

Microscopic Anatomy of Skeletal Muscle Slide 6.11a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Organization of the sarcomere  Thick filaments = myosin filaments  Composed of the protein myosin  Has ATPase enzymes Figure 6.3c

Microscopic Anatomy of Skeletal Muscle Slide 6.11b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Organization of the sarcomere  Thin filaments = actin filaments  Composed of the protein actin Figure 6.3c

Microscopic Anatomy of Skeletal Muscle Slide 6.12a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Myosin filaments have heads (extensions, or cross bridges)  Myosin and actin overlap somewhat Figure 6.3d

Microscopic Anatomy of Skeletal Muscle Slide 6.12b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  At rest, there is a bare zone that lacks actin filaments  Sarcoplasmic reticulum (SR) – for storage of calcium Figure 6.3d

Properties of Skeletal Muscle Activity Slide 6.13 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Irritability – ability to receive and respond to a stimulus  Contractility – ability to shorten when an adequate stimulus is received

Nerve Stimulus to Muscles Slide 6.14 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Skeletal muscles must be stimulated by a nerve to contract  Motor unit  One neuron  Muscle cells stimulated by that neuron Figure 6.4a

Nerve Stimulus to Muscles Slide 6.15a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Neuromuscular junctions – association site of nerve and muscle Figure 6.5b

Nerve Stimulus to Muscles Slide 6.15b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Synaptic cleft – gap between nerve and muscle  Nerve and muscle do not make contact  Area between nerve and muscle is filled with interstitial fluid Figure 6.5b

Transmission of Nerve Impulse to Muscle Slide 6.16a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Neurotransmitter – chemical released by nerve upon arrival of nerve impulse  The neurotransmitter for skeletal muscle is acetylcholine (ACh)  Neurotransmitter attaches to receptors on the sarcolemma  Sarcolemma becomes permeable to sodium (Na + )

Transmission of Nerve Impulse to Muscle Slide 6.16b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Sodium rushing into the cell generates an action potential  Triggers Ca+ to be released from sarcoplasmic reticulum  Once started, muscle contraction cannot be stopped

The Sliding Filament Theory of Muscle Contraction Slide 6.17a Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  Release of Ca+ causes myosin heads (crossbridges) to attach to binding sites on the thin filament  Myosin heads then bind to the next site of the thin filament Figure 6.7

The Sliding Filament Theory of Muscle Contraction Slide 6.17b Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings  This continued action causes a sliding of the actin along the myosin  The result is that the muscle is shortened (contracted) Figure 6.7

The Sliding Filament Theory The Sliding Filament Theory (animation) The Sliding Filament Theory Slide 6.18 Copyright © 2003 Pearson Education, Inc. publishing as Benjamin Cummings Figure 6.8