First Attempt of Modelling of the COROT Main Target HD 49434 Workshop: "gamma Doradus stars in the COROT fields" 26 - 28/05/2008 - Nice Mehdi – Pierre.

Slides:



Advertisements
Similar presentations
Stellar Structure Section 4: Structure of Stars Lecture 8 – Mixing length theory The three temperature gradients Estimate of energy carried by convection.
Advertisements

June Corot Week 4 Belgian Asteroseismology Group A Hare and Hound in a Bag… Why are they seismologically interesting ?  Cephei Stars.
Corot HD A.Thoul Modeling of HD = V1449 Aql (THE only  Cephei star main target of CoRoT). Anne Thoul + Maryline Briquet, Pieter Degroote,
PHOTOMETRIC AND SPECTROSCOPIC MONITORING OF DSCT, GDOR AND BCEP VARIABLES Recent and future observations Ennio Poretti INAF – Osservatorio Astronomico.
1 A B Models and frequencies for frequencies for α Cen α Cen & Josefina Montalbán & Andrea Miglio Institut d’Astrophysique et de Géophysique de Liège Belgian.
Precision and accuracy in stellar oscillations modeling Marc-Antoine Dupret, R. Scuflaire, M. Godart, R.-M. Ouazzani, … 11 June 2014ESTER workshop, Toulouse1.
Solar-like Oscillations in Red Giant Stars Olga Moreira BAG.
Asteroseismology of solar-type stars Revolutionizing the study of solar-type stars Hans Kjeldsen, Aarhus University.
Analysis and modelling of the δ-Scuti stars HD (ID7528) & HD (ID7613) Antonio García Hernández; Moya, A.; Suárez, J.C.; Garrido, R. et al.
Reaching the 1% accuracy level on stellar mass and radius determinations from asteroseismology Valerie Van Grootel (University of Liege) S. Charpinet (IRAP.
Exoplanet- Asteroseismology Synergies Bill Chaplin, School of Physics & Astronomy University of Birmingham, UK EAHS2012, Oxford, 2012 March 15.
Mode identification using Corot exo-planetary colours Rafael Garrido IAA, Granada (Spain) Rafael Garrido IAA, Granada (Spain) Juan Carlos Suárez IAA, Granada.
Toulouse May 2005 Corot-Week 8 δ Scuti and γ Dor stars in COROT Rafael Garrido IAA, Granada (Spain)
SOLUTION 1: ECLIPSING BINARIES IN OPEN CLUSTERS The study of eclipsing binaries in open clusters allows strong constraints to be placed on theoretical.
HIGH-PRECISION PHOTOMETRY OF ECLIPSING BINARY STARS John Southworth + Hans Bruntt + Pierre Maxted + many others.
Astroseismology of a  -Cephei star Nick Cowan April 2006 Nick Cowan April 2006.
Properties of stars during hydrogen burning Hydrogen burning is first major hydrostatic burning phase of a star: Hydrostatic equilibrium: a fluid element.
1 Influence of the Convective Flux Perturbation on the Stellar Oscillations: δ Scuti and γ Doradus cases A. Grigahcène, M-A. Dupret, R. Garrido, M. Gabriel.
João Pedro Marques Mário João Monteiro CESAM2K CoRoT/ESTA - Aarhus Workshop.
Excitation of Oscillations in the Sun and Stars Bob Stein - MSU Dali Georgobiani - MSU Regner Trampedach - MSU Martin Asplund - ANU Hans-Gunther Ludwig.
The Effects of Mass Loss on the Evolution of Chemical Abundances in Fm Stars Mathieu Vick 1,2 Georges Michaud 1 (1)Département de physique, Université.
Nuno C. Santos Cool Stars 13 - Hamburg, Germany - July2004 Spectroscopic characteristics of planet-host stars and their planets Nuno C. Santos (Observatory.
Nov. 6, 2008Thanks to Henrietta Leavitt Cepheid Multiplicity and Masses: Fundamental Parameters Nancy Remage Evans.
Convection Simulation of an A-star By Regner Trampedach Mt. Stromlo Observatory, Australian National University 8/19/04.
Inversion of rotation profile for solar-like stars Jérémie Lochard IAS 19/11/04.
Catania 09/08SIAMOIS1/26 Benoît Mosser, for the SIAMOIS team Ground-based Doppler asteroseismology after CoRoT and Kepler.
Interesting News… Regulus Age: a few hundred million years Mass: 3.5 solar masses Rotation Period:
July Benoît Mosser Observatoire de Paris LESIA Mixed modes in red giants: a window on stellar evolution Stellar End Products Stellar End Products:
Spring School of Spectroscopic Data Analyses 8-12 April 2013 Astronomical Institute of the University of Wroclaw Wroclaw, Poland.
Katrien Uytterhoeven The Kepler space mission: New prospects for δ Sct, γ Dor, and hybrid stars Instituto de Astrofísica de Canarias, Tenerife NMSU, January.
Review of Lecture 4 Forms of the radiative transfer equation Conditions of radiative equilibrium Gray atmospheres –Eddington Approximation Limb darkening.
Model atmospheres for Red Giant Stars Bertrand Plez GRAAL, Université de Montpellier 2 RED GIANTS AS PROBES OF THE STRUCTURE AND EVOLUTION OF THE MILKY.
10/9/ Studying Hybrid gamma Doradus/ delta Scuti Variable Stars with Kepler Joyce A. Guzik (for the Kepler Asteroseismic Science Consortium) Los.
Stellar Parameters through Analysis of the Kepler Oscillation Data Chen Jiang & Biwei Jiang Department of Astronomy Beijing Normal University 2 April 2010.
Excitation and damping of oscillation modes in red-giant stars Marc-Antoine Dupret, Université de Liège, Belgium Workshop Red giants as probes of the structure.
Surface abundances of Am stars as a constraint on rotational mixing Olivier Richard 1,2, Suzanne Talon 2, Georges Michaud 2 1 GRAAL UMR5024, Université.
Valerie Van Grootel(1) G. Fontaine(2), P. Brassard(2), and M. A
Fuerteventura, Spain – May 25, 2013 Physical parameters of a sample of M dwarfs from high- resolution near-infrared spectra Carlos del Burgo Collaborators:
The CoRoT ground-based complementary archive The CoRoT ground-based complementary archive Monica Rainer, Ennio Poretti M. Rosa Panzera, Angelo Mistò INAF.
Travis Metcalfe (NCAR) Asteroseismology with the Kepler Mission We are the stars which sing, We sing with our light; We are the birds of fire, We fly over.
Workshop: «  Doradus stars in the COROT fields » Nice, May, Driving mechanism and energetic aspects of pulsations in  Doradus stars A.Miglio.
A Practical Introduction to Stellar Nonradial Oscillations (i) Rich Townsend University of Delaware ESO Chile ̶ November 2006 TexPoint fonts used in EMF.
1 Observations of Convection in A-type Stars Barry Smalley Keele University Staffordshire United Kingdom.
A tool to simulate COROT light-curves R. Samadi 1 & F. Baudin 2 1 : LESIA, Observatory of Paris/Meudon 2 : IAS, Orsay.
Modelling high-order g-mode pulsators Nice 27/05/2008 A method for modelling high-order, g-mode pulsators: The case of γ Doradus stars. A. Moya Instituto.
LIGHT AND RADIAL VELOCITY VARIATIONS DUE TO LOW FREQUENCY OSCILLATIONS IN ROTATING STARS Jadwiga Daszy ń ska-Daszkiewicz Instytut Astronomiczny, Uniwersytet.
Precision stellar physics from the ground Andrzej Pigulski University of Wrocław, Poland Special Session #13: High-precision tests of stellar physics from.
Kick-off meeting SIAMOIS Paris, mai 2006 PMS targets Seismology of Herbig stars with SIAMOIS Torsten Böhm, Marc-Antoine Dupret Claude Catala, Marie-Jo.
The Empirical Mass Distribution of Hot B Subdwarfs derived by asteroseismology and other means Valerie Van Grootel (1) G. Fontaine (2), P. Brassard (2),
PHYSICS UNDER THE BONNET OF A STELLAR EVOLUTION CODE Richard J. Stancliffe Argelander Institut für Astronomie, Universität Bonn.
June 6-9, 2006COROT Week 10, Nice PMS Thematic Team Activities since CW9 K. Zwintz (Institute of Astronomy, Univ. Vienna, Austria) & members of the PMS.
Colin Folsom (Armagh Observatory).  Read input  Calculate line components (Zeeman splitting)  Calculate continuum opacity (per window, per atmospheric.
Warm Absorbers: Are They Disk Outflows? Daniel Proga UNLV.
Gas-kineitc MHD Numerical Scheme and Its Applications to Solar Magneto-convection Tian Chunlin Beijing 2010.Dec.3.
Julie Hollek and Chris Lindner.  Background on HK II  Stellar Analysis in Reality  Methodology  Results  Future Work Overview.
P-type pulsators on the main sequence of HR Diagram Gyöngyi Kerekes COROT-day Budapest March, 2007.
 Introduction to Stellar Pulsations  RR Lyrae Stars and the Blazhko Effect  Part I of the Thesis Work:  Temporal Behaviour of the RR Lyrae Data 
Stellar parameters of Be targets for Corot C. Neiner 1,2, Y.Frémat 3, A.-M. Hubert 2, M. Floquet 2, E. Janot-Pacheco 4, J. Fabregat 5, J. Zorec 6 1 RSSD,
The Saga of Procyon Pierre Demarque Yale University “Stars in Motion” A Symposium in honor of Bill van Altena September
July 12, 2004Pulsating PMS stars Pulsating Pre-Main Sequence Stars in Young Open Clusters K. Zwintz Institute of Astronomy, Univ. Vienna, Austria
Subdwarf B stars from He white dwarf mergers Haili Hu.
HD and its super-Earth Valerie Van Grootel (University of Liege, Belgium) M. Gillon (U. Liege), D. Valencia (U. Toronto), N. Madhusudhan (U. Cambridge),
On the origin of Microturbulence in hot stars
Asteroseismic Modeling Portal (AMP) Development
the Virtual Observatory
Asteroseismology of solar-type stars
E. Alécian, C. Catala, M.J. Goupil
PRE(Photospheric Radius Expansion) X-ray burst simulation with MESA(Modules for Experiments in Stellar Astrophysics) rd CHEA Workshop Gwangeon.
ASTEROSEISMOLOGY OF LATE STAGES OF STELLAR EVOLUTION
Convection John Crooke 3/26/2019.
Presentation transcript:

First Attempt of Modelling of the COROT Main Target HD Workshop: "gamma Doradus stars in the COROT fields" /05/ Nice Mehdi – Pierre BOUABID Laboratoire Fizeau (OCA/UNSA/CNRS) ‏

Outline of the Talk Context of the study Context of the study Already done Already done Stellar parameters Stellar parameters Results of ground-based observations Results of ground-based observations Modelling Modelling Tools Tools Grid of models Grid of models Results Results Future work with the oscillation codes Future work with the oscillation codes Conclusions & prospects Conclusions & prospects

Context of this study - γDor F1V - Primary Target of the COROT winter 2007 long run - Ground-based observations during winter 2006 & winter Theoretical study makes with help from M.-A. Dupret, A. Grigahcène, A. Miglio, J. Montalban, A. Noels.

Stellar parameters of HD T eff = 7300 ± 200 K ; log(g) = 4.2 ± 0.4 (Bruntt et al. 2004)‏ T eff = 7632 ± 126 K ; log(g) = 4.43 ± 0.2 (Gillon & Magain 2006)‏ log(L/L  ) = ± (SIMBAD Catalog)‏ [Fe/H] = ± 0.21 (Bruntt et al. 2004)‏ [Fe/H] = ± 0.07 (Gillon & Magain 2006)‏ Z = ± (Uytterhoeven et al. 2008) v.sin(i) = 85.4 ± 6.6 km.s -1 (Gillon et Magain 2006)‏

Photometry vs Spectroscopy for stellar parameters calculation What is the best way to find the stellar parameters of HD ? - mesure of the photometric flux : need data from UV to IR  no UV data available - using the photometric parameters (b-y,m1,c1,beta)‏  Bruntt et al. (2004) - spectroscopic study of one line (H α depends on T eff )  Bruntt et al. (2004) - multi-line spectroscopy  Gillon et Magain (2006)

Results from the ground-based observations Frequencies (c/d)Uncertain Frequencies (c/d)‏ (7)???6.6841/ (8) / (8) / (5)2.666(2)5.3311(3)5.583(1)9.3070(3) γDor δSct

First modelling of HD CLES : « Code Liégeois d’Évolution Stellaire » v.18 LOSC : adiabatic oscillation code v.37 at term MAD : non adiabatic oscillation code

CLES Young interactive stellar evolution code, still in development by the Liege Team and associates Generate evolutionary sequence of models from the Hayashi Track to the He Flash

CLES Parameters in CLES : - mixing length - overshooting - diffusion - equation of state - mass - metallicity/opacity table - hydrogen and metal fraction Many inputs  Need a good accuracy of observed stellar parameters !

Limits of CLES This version of CLES does not take into account : - radiative accelerations - undershooting at the base of the convective envelope - rotation - mass loss …

First grid of models - EOS Opal - Standard metallicity and opacity tables (Grevesse Noels 1993)‏ Grid : - M = 1.30 to 1.80 M  by step of 0.05 M  ‏ - Z = 0.01; α Conv = 2.0

M = 1.30 Mo Z = 0.01 Z = 0.02 M = 1.80 Mo

Mo M = 1.80 Mo M = 1.30 Mo γDor excitation mechanism temperature interval (*) (*) Guzik et al. (2000) Z = 0.01 Z = 0.02

γDor excitation mechanism temperature interval T eff (HD 49434)

Results It is not easy to generate models showing γDor excitation mechanism characteristics at this temperature Convection efficiency depends on the temperature : Convection ∇ rad > ∇ ad with ∇ rad =

Try to see with a α conv = 3.0 α conv = 3.0 α conv = L/H p is a free parameter - L = Mean free path of a globule in the convective zone - H p = Pressure scale α conv  = 1.8 Hydrodynamics 2D & 3D simulations show that we expect : when T eff , α conv   How can we explain a so efficient convection ?

M = 1.30 Mo M = 1.80 Mo Z = 0.01 Z = 0.02 α conv = 3.0 for α conv = 2.0 !!!

M = 1.30 Mo M = 1.80 Mo γDor excitation mechanism temperature interval (*) Guzik et al. (2000) γDor excitation mechanism temperature interval (*) (*) Guzik et al. (2000) α conv = 3.0 Z = 0.02 Z = 0.01

α conv = 3.0 γDor excitation mechanism temperature interval T eff (HD 49434)

With LOSC, we can see if p and g modes can exist for this models BUT We can not learn anything more from adiabatic pulsation modelling  Need non-adiabatic study to see if γDor/δSct oscillations can be excited for this models

MAD Dupret & Grigahcène – private communication

Guzik’s criterion ???

Conclusions & Prospects Challenging star to modelise Challenging star to modelise Need more restrained stellar parameters (with our own data ?!) Need more restrained stellar parameters (with our own data ?!) Need a non-adiabatic seismic study Need a non-adiabatic seismic study Will be helped by a study of the Liège γDor models grid Will be helped by a study of the Liège γDor models grid Constrain the blue edge of the γDor IS Constrain the blue edge of the γDor IS Learn more about the γDor excitation mechanism Learn more about the γDor excitation mechanism Learn more about γDor/δSct hybrid pulsators Learn more about γDor/δSct hybrid pulsators

Work in progress ! Thank you !

LOSC adiabatic pulsation code Inputs : - choice of the grid step to compute oscillations - optimal distribution of points for p or g modes - scan - frequency spectrum - equidistant scale in frequency (p modes) or in time (g modes)‏ - calculation of modes for an approximative frequency

LOSC outputs - degree of the mode - order of the mode - parity of the mode - (non-)dimensional frequency - vertical energy fraction versus total energy - Eigenfunctions of the mode