Mariya Korzhavina Budker Institute of Nuclear Physics, Novosibirsk, Russia Study of microinstabilities in anisotropic plasmoid of thermonuclear ions 8.

Slides:



Advertisements
Similar presentations
Particle’s Dynamics in Dusty Plasma with Gradients of Dust Charges
Advertisements

Ion-Induced Instability of Diocotron Modes In Magnetized Electron Columns Andrey Kabantsev University of California at San Diego Physics Department Nonneutral.
Biased Electrodes for SOL Control in NSTX S.J. Zweben, R.J. Maqueda*, L. Roquemore, C.E. Bush**, R. Kaita, R.J. Marsala, Y. Raitses, R.H. Cohen***, D.D.
Rotating Wall/ Centrifugal Separation John Bollinger, NIST-Boulder Outline ● Penning-Malmberg trap – radial confinement due to angular momentum ● Methods.
Primary experimental results of suppressing MHD instabilities in HT-7 by biased electrode Zhong Fangchuan, Luo Jiarong Shu Shuangbao College of Science,
TEST GRAINS AS A NOVEL DIAGNOSTIC TOOL B.W. James, A.A. Samarian and W. Tsang School of Physics, University of Sydney NSW 2006, Australia
Phonons in a 2D Yukawa triangular lattice: linear and nonlinear experiments Dept. of Physics and Astronomy, University of Iowa supported by DOE, NASA,
F. Cheung, A. Samarian, B. James School of Physics, University of Sydney, NSW 2006, Australia.
ITER reflectometry diagnostics operation limitations caused by strong back and small angle scattering E.Gusakov 1, S. Heuraux 2, A. Popov 1 1 Ioffe Institute,
Observation and Theory of Substorm Onset C. Z. (Frank) Cheng (1,2), T. F. Chang (2), Sorin Zaharia (3), N. N. Gorelenkov (4) (1)Plasma and Space Science.
A Critical Role for Viscosity in the Radio Mode AGN Feedback Cycle Paul Nulsen Harvard-Smithsonian Center for Astrophysics 2014 July 9X-ray View of Galaxy.
F. Cheung, A. Samarian, W. Tsang, B. James School of Physics, University of Sydney, NSW 2006, Australia.
Non-collisional ion heating and Magnetic Turbulence in MST Abdulgader Almagri On behalf of MST Team RFP Workshop Padova, Italy April 2010.
A Materials Evaluation Neutron Source Based on the Gas Dynamic Trap (DTNS) One Element in an Urgently Needed Comprehensive Fusion Materials Program Based.
D. Borba 1 21 st IAEA Fusion Energy Conference, Chengdu China 21 st October 2006 Excitation of Alfvén eigenmodes with sub-Alfvénic neutral beam ions in.
Kinetic plasma microinstabilities Gentle beam instability Ion- and electron-acoustic instability Current-driven cyclotron instability Loss-cone instabilities.
Fast imaging of global eigenmodes in the H-1 heliac ABSTRACT We report a study of coherent plasma instabilities in the H-1 plasma using a synchronous gated.
F.M.H. Cheung School of Physics, University of Sydney, NSW 2006, Australia.
T. Hellsten IEA Burning Plasma Workshop, July 2005 Tarragona Spain Integrated Modelling of ICRH and AE Dynamics T. Hellsten, T. Bergkvist, T. Johnson and.
NON-EQUILIBRIUM HEAVY GASES PLASMA MHD-STABILIZATION IN AXISYMMETRIC MIRROR MAGNETIC TRAP A.V. Sidorov 2, P.A. Bagryansky 1, A.D. Beklemishev 1, I.V. Izotov.
1 ST workshop 2005 Numerical modeling and experimental study of ICR heating in the spherical tokamak Globus-M O.N.Shcherbinin, F.V.Chernyshev, V.V.Dyachenko,
Initial wave-field measurements in the Material Diagnostic Facility (MDF) Introduction : The Plasma Research Laboratory at the Australian National University.
A New Approach to Fusion Energy
Wave induced supersonic rotation in mirrors Abraham Fetterman and Nathaniel Fisch Princeton University.
Parameter sensitivity tests for the baseline variant Konstantin Lotov, Vladimir Minakov, Alexander Sosedkin Budker Institute of Nuclear Physics SB RAS,
Edge Localized Modes propagation and fluctuations in the JET SOL region presented by Bruno Gonçalves EURATOM/IST, Portugal.
Review of Collaboration Activities J.Q. Dong* H.D. He, Y. Shen, and A.P. Sun Southwestern Institute of Physics, China *Institute for Fusion Theory and.
Correlation Analysis of Electrostatic Fluctuation between Central and End Cells in GAMMA 10 Y. Miyata, M. Yoshikawa, F. Yaguchi, M. Ichimura, T. Murakami.
Extrapolation of GDT Results to a DT Fusion Neutron Source for Fusion Materials Testing e Tom Simonen, U. Calif., Berkeley 8 th International Conference.
PLASMA HEATING AND HOT ION SUSTAINING IN MIRROR BASED HYBRIDS
Numerical model of the fusion-fission hybrid system based on gas dynamic trap for transmutation of radioactive wastes Andrey Anikeev Institute for Neutron.
Operated by Los Alamos National Security, LLC for the U.S. Department of Energy’s NNSA U N C L A S S I F I E D Slide 1 Dynamic Electron Injection for Improved.
M. Ichimura, Y. Yamaguchi, R. Ikezoe, Y. Imai, T. Murakami,
Fusion neutron research in Novosibirsk including experiments
MHD Suppression with Modulated LHW on HT-7 Superconducting Tokamak* Support by National Natural Science Fund of China No J.S.Mao, J.R.Luo, B.Shen,
Kinetic plasma microinstabilities Gentle beam instability Ion- and electron-acoustic instability Current-driven cyclotron instability Loss-cone instabilities.
Edge and Internal Transport Barrier Formations in CHS S. Okamura, T. Minami, T. Akiyama, T. Oishi 1, A. Fujisawa, K. Ida, H. Iguchi, M. Isobe, S. Kado.
Probe measurements on the GOLEM tokamak Vojtech Svoboda 1, Miglena Dimitrova 2, Jan Stockel 1,2 1 Faculty of Nuclear Physics and Physical Engineering,
HT-7 ASIPP The Influence of Neutral Particles on Edge Turbulence and Confinement in the HT-7 Tokamak Mei Song, B. N. Wan, G. S. Xu, B. L. Ling, C. F. Li.
Beam Voltage Threshold for Excitation of Compressional Alfvén Modes E D Fredrickson, J Menard, N Gorelenkov, S Kubota*, D Smith Princeton Plasma Physics.
A. Vaivads, M. André, S. Buchert, N. Cornilleau-Wehrlin, A. Eriksson, A. Fazakerley, Y. Khotyaintsev, B. Lavraud, C. Mouikis, T. Phan, B. N. Rogers, J.-E.
Measurements of plasma turbulence by laser scattering in the Wendelstein 7-AS stellarator Nils P. Basse 1,2, S. Zoletnik, M. Saffman, P. K. Michelsen and.
Laboratory Study of Spiky Potential Structures Associated with Multi- Harmonic EIC Waves Robert L. Merlino and Su-Hyun Kim University of Iowa Guru Ganguli.
Effect of Helical Magnetic Field Ripples on Energetic Particle Confinement in LHD Plasmas T.Saida, M.Sasao, M.Isobe 1, M.Nishiura 1, S.Murakami 2, K.Matsuoka.
CALIBRATION OF THE STEREO ANTENNAS AT LOW FREQUENCIES To measure Electric Fields To measure density fluctuations especially in the ion cyclotron frequency.
Chernoshtanov I.S., Tsidulko Yu.A.
Simulations of NBI-driven Global Alfven Eigenmodes in NSTX E. V. Belova, N. N. Gorelenkov, C. Z. Cheng (PPPL) NSTX Results Forum, PPPL July 2006 Motivation:
of magnetized discharge plasmas: fluid electrons + particle ions
1 ESS200C Pulsations and Waves Lecture Magnetic Pulsations The field lines of the Earth vibrate at different frequencies. The energy for these vibrations.
Magnetic Reconnection in Plasmas; a Celestial Phenomenon in the Laboratory J Egedal, W Fox, N Katz, A Le, M Porkolab, MIT, PSFC, Cambridge, MA.
A.Yu. Chirkov1), S.V. Ryzhkov1), P.A. Bagryansky2), A.V. Anikeev2)
Turbulent Convection and Anomalous Cross-Field Transport in Mirror Plasmas V.P. Pastukhov and N.V. Chudin.
52nd Annual Meeting of the Division of Plasma Physics, November , 2010, Chicago, Illinois 5-pin Langmuir probe configured to measure floating potential.
Effect of Energetic-Ion/Bulk-Plasma- driven MHD Instabilities on Energetic Ion Loss in the Large Helical Device Kunihiro OGAWA, Mitsutaka ISOBE, Kazuo.
1 ASIPP Sawtooth Stabilization by Barely Trapped Energetic Electrons Produced by ECRH Zhou Deng, Wang Shaojie, Zhang Cheng Institute of Plasma Physics,
1 Current State of Omegatron Analyzer in the HT-7 Tokamak HT-7 ASIPP Ling Bi-li a),Wang En-yao b),Gao wei a),Wan Bao-nian a),Li Jian-gang a) a) Institute.
The Heavy Ion Fusion Virtual National Laboratory Erik P. Gilson** PPPL 15 th International Symposium on Heavy Ion Fusion June 9 th, 2004 Research supported.
Introduction to Plasma Physics and Plasma-based Acceleration
Multitube Helicon Source with Permanent Magnets
Gamma Ray Spectrometry System Design for ITER Plasma Diagnostics
The 15th International Conference on Ion Sources (ICIS’13)
N. D’Angelo, B. Kustom, D. Susczynsky, S. Cartier, J. Willig
Confining instabilities in a complex plasma S. V. Vladimirov, A. A
Steven R. Spangler University of Iowa
The Gas Dynamic Trap (GDT) Neutron Source
Stabilization of m/n=1/1 fishbone by ECRH
Alfven Oscillations in the TUMAN-3M Tokamak Ohmic Regime
2. Crosschecking computer codes for AWAKE
The GDT device at the Budker Institute of Nuclear Physics is an experimental facility for studies on the main issues of development of fusion systems based.
A.V.Burdakov at al. Plasma transport in linear and helical multiple-mirror systems (EX/P5-26) Budker INP ( Novosibirsk, Russia) developed Gas-Dynamic Multiple-mirror.
Presentation transcript:

Mariya Korzhavina Budker Institute of Nuclear Physics, Novosibirsk, Russia Study of microinstabilities in anisotropic plasmoid of thermonuclear ions 8 th International Conference on Open Magnetic Systems for Plasma Confinement

View of the Gas Dynamic Trap facility

General layout of gas dynamic trap (GDT) Length 7 m Magnetic field: center 0.3 Т mirror up to 12 Т Mirror ratio B m /B c ≈ 35 Target plasma: cm -3, 150 eV Fast ions (H +,D + ): ~10 13 cm -3, ≈10 keV

Experiment with compact mirror cell at the Gas Dynamic Trap

Compact mirror at GDT Experiment: 2ρ fi >1; β >E ||. Compact mirror cell (CM): L = 30 cm, D = 70 cm. Magnetic field: B 0 = 2.4 T, B m = 5.2 T Background plasma: hydrogen, n w ≈ cm -3, T w ≈ 150 eV, a w = 9 cm. CM NBI system: hydrogen, E 0 = 20 keV, θ = 90º, P inj ≈ 1 MW, τ inj = 4 ms, a f = 8-10 cm. Strong high-frequency oscillations of plasma potential during accumulation of the fast ions in the compact mirror Compact mirror cell GDT central cell

Early studies of microinstabilities M.S.Ioffe, B.B.Kadomcev, Uspekhi Fizicheskih Nauk, vol. 100, № 4, 1970 R.F.Post, Nuclear fusion, Vol.27, 1987 F.H.Coensgen, et al. Phys.Rev.Letters, Vol.35, 1975, [2XIIB] T.A.Casper, G.R.Smith, Phys.Rev.Letters, Vol.45, 1982, [TMX] M. Ichimura, et al. Phys.Rev.Letters, Vol.70, 1993, [Gamma-10]

DCLC The drift-cyclotron losscone instability k ║ « k ┴ k || = 0 ω ≈ ω ci AIC The Alfven ion- cyclotron instability k ║ » k ┴ k ┴ = 0 ω < ω ci Microinstabilities in anisotropic plasma

Estimation of developing DCLC and AIC in the compact mirror of GDT DCLC Stabilization by addition of small amount of warm ions: n w /n f > 0.06 GDT CM: n w /n f ≈ 0.1 AIC Instability grows if: β ┴ A > const GDT CM: A ≡ / ≈ 50, β ┴ ≈ 0.02 βA ≈ 1 R.F.Post, Nuclear fusion, Vol.27, 1987 M.J.Gerver, The Phys. of Fluids, Vol.19,1976 D.C.Watson, Phys.Fluids 23,1980

High-frequency oscillations in plasmoid have been observed with special HF Langmuir and magnetic probes Set of special HF Langmuir probes Tree orthogonal loops of the HF magnetic probe. 10 mm

Modes: k = m/r p r p = 4.5 cm m ≈ 1-6 Layout of the HF Langmuir probes system in the compact mirror of GDT

HF magnetic probe

Oscillation frequency: f osc = 39.7 ± 0.2 MHz B midplane = 27.6 ± 0.3 kGs f ci = 42 ± 0.5 MHz Cross amplitude spectrum f osc f ci

Voltage oscillations induced in loops of magnetic probe

Rotation of the wave magnetic field vector Rotation in the direction of ion gyration

Mode structure analysis, azimuthal modes Azimuthal mode m = 1, rarely 2.

Observation of AIC in the compact mirror of the GDT Частотный спектр колебаний f0f0 f ci Cross amplitude spectrum f0f0 f ci Phase variation, radian Azimuthal probe separation, radian m=1 m=2 RF Langmuir probes : frequency, azimuthal modes Magnetic probes: polarization Azimuthal vs radial induced loop voltages. The field vector rotates in the direction of ion gyration. Azimuthal number m ~ 1- 2 Main frequency f 0 < f ci The magnetic field vector of the wave rotates in the direction of ion gyration. AIC

Threshold of the oscillations Diamagnetism of fast ions in the compact mirror Amplitude of HF oscillations induced on magnetic probe n >3 х сm -3 A ≈ 40; β ┴ = 0.02 =>  ┴ A ~ 1.  сi /а p ≈ 0.23 Anisotropy of the ion plasmoid

Results: Microinstability developing in the compact mirror is Alfven ion- cyclotron (AIC). This was proved by observing small azimuthal modes numbers m = 1–2, oscillation frequency below the diamagnetically depressed ion-cyclotron frequency and rotation of the magnetic field of the wave in the direction of ion gyration. The threshold of the AIC fluctuation was determined relative to the density of hot ions, ratio of ion pressure to magnetic field pressure β, anisotropy A and the ion gyroradius to the plasmoid radius ratio a i /R p. AIC microinstability developed when the density of hot ions n f was greater than 3x10 13 cm -3, β ≈ 0.02, anisotropy A ≈ 50, for the ratio a i /R p of about Experimentally was confirmed the criteria which defines the stability region  A < 1. Alfven ion cyclotron instability developing in the CM GDT does not lead to the significant particle loss and plasma parameters limitation.

Thank you!

Dots – experimental data, solid line – calculation (ITCS). Dependence of fast ion density in the compact mirror of GDT on the trapped power

Регистрация AIC на TMX Электрические зонды: частота и модовый состав Магнитные зонды: поляризация T.A.Casper, G.R.Smith, Phys.Rev.Letters, Vol.45, 1982 |m| ≈ 4 f 0 < f ci Вращение магнитного поля волны в направлении ларморовского движения ионов AIC

Анализ модового состава, продольные моды DCLC: набег фазы между средним зондом в КП и зондом в расширителе, силовая линия 15.5 cm – от выстрела к выстрелу случайный DCLC нет

Параметры ГДЛ: c / R p ω ci ≈ 18 ; ω 2 ci / ω 2 pi ≈ Стабилизация теплыми ионами: n w /n f > 0.06 ГДЛ: n w /n f ≈ 0.1 R.F.Post, Nuclear fusion, Vol.27, 1987 M.J.Gerver, The Phys. of Fluids, Vol.19,1976 Оценки для DCLC мод в КП ГДЛ

Оценки для AIC мод в КП Критерий развития неустойчивости: ГДЛ: A ≡ / = 50, β = 0.02 βA ≈ 1 При β ║ ~ β ┴ « 1 β ║ < const * β ┴ 2 или (β ║, β ┴ ) → (A, β ┴ ) : β ┴ A > const D.C.Watson, Phys.Fluids 23,1980 T.A.Casper, G.R.Smith, Phys.Rev.Letters, Vol.45, 1982 βA 2 > 8 TMX ? Параметры ГДЛ: β ║ < β ┴ ~ 0.02

DCLC и AIC на установках 2X||B и TMX 2XIIB : основная неустойчивость – DCLC, TMX: основная неустойчивость – AIC,

Корреляционный анализ Взаимная корреляционная функция: Сигналы с зондов φ 1 (t), φ 2 (t) → БПФ → Спектральная плотность взаимной корреляционной функции:

Сделаем преобразование Фурье