Inference for Learning Belief Propagation. So far... Exact methods for submodular energies Approximations for non-submodular energies Move-making ( N_Variables.

Slides:



Advertisements
Similar presentations
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Advertisements

Mean-Field Theory and Its Applications In Computer Vision1 1.
Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London Tutorial at GDR (Optimisation Discrète, Graph Cuts.
1 LP, extended maxflow, TRW OR: How to understand Vladimirs most recent work Ramin Zabih Cornell University.
O BJ C UT M. Pawan Kumar Philip Torr Andrew Zisserman UNIVERSITY OF OXFORD.
Solving Markov Random Fields using Second Order Cone Programming Relaxations M. Pawan Kumar Philip Torr Andrew Zisserman.
Solving Markov Random Fields using Dynamic Graph Cuts & Second Order Cone Programming Relaxations M. Pawan Kumar, Pushmeet Kohli Philip Torr.
Constrained Approximate Maximum Entropy Learning (CAMEL) Varun Ganapathi, David Vickrey, John Duchi, Daphne Koller Stanford University TexPoint fonts used.
Learning with Inference for Discrete Graphical Models Nikos Komodakis Pawan Kumar Nikos Paragios Ramin Zabih (presenter)
ICCV 2007 tutorial Part III Message-passing algorithms for energy minimization Vladimir Kolmogorov University College London.
An Analysis of Convex Relaxations (PART I) Minimizing Higher Order Energy Functions (PART 2) Philip Torr Work in collaboration with: Pushmeet Kohli, Srikumar.
Convergent Message-Passing Algorithms for Inference over General Graphs with Convex Free Energies Tamir Hazan, Amnon Shashua School of Computer Science.
Learning with Inference for Discrete Graphical Models Nikos Komodakis Pawan Kumar Nikos Paragios Ramin Zabih (presenter)
1 Fast Primal-Dual Strategies for MRF Optimization (Fast PD) Robot Perception Lab Taha Hamedani Aug 2014.
CS774. Markov Random Field : Theory and Application Lecture 04 Kyomin Jung KAIST Sep
An Analysis of Convex Relaxations M. Pawan Kumar Vladimir Kolmogorov Philip Torr for MAP Estimation.
P 3 & Beyond Solving Energies with Higher Order Cliques Pushmeet Kohli Pawan Kumar Philip H. S. Torr Oxford Brookes University CVPR 2007.
Improved Moves for Truncated Convex Models M. Pawan Kumar Philip Torr.
Message Passing Algorithms for Optimization
Efficiently Solving Convex Relaxations M. Pawan Kumar University of Oxford for MAP Estimation Philip Torr Oxford Brookes University.
Recovering Articulated Object Models from 3D Range Data Dragomir Anguelov Daphne Koller Hoi-Cheung Pang Praveen Srinivasan Sebastian Thrun Computer Science.
Graph Cut based Inference with Co-occurrence Statistics Ľubor Ladický, Chris Russell, Pushmeet Kohli, Philip Torr.
Understanding Belief Propagation and its Applications Dan Yuan June 2004.
MAP estimation in MRFs via rank aggregation Rahul Gupta Sunita Sarawagi (IBM India Research Lab) (IIT Bombay)
Relaxations and Moves for MAP Estimation in MRFs M. Pawan Kumar STANFORDSTANFORD Vladimir KolmogorovPhilip TorrDaphne Koller.
Hierarchical Graph Cuts for Semi-Metric Labeling M. Pawan Kumar Joint work with Daphne Koller.
Measuring Uncertainty in Graph Cut Solutions Pushmeet Kohli Philip H.S. Torr Department of Computing Oxford Brookes University.
Extensions of submodularity and their application in computer vision
MAP Estimation Algorithms in M. Pawan Kumar, University of Oxford Pushmeet Kohli, Microsoft Research Computer Vision - Part I.
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris École des Ponts ParisTech INRIA Saclay, Île-de-France Joint work with Phil.
Probabilistic Inference Lecture 4 – Part 2 M. Pawan Kumar Slides available online
Reconstructing Relief Surfaces George Vogiatzis, Philip Torr, Steven Seitz and Roberto Cipolla BMVC 2004.
Planar Cycle Covering Graphs for inference in MRFS The Typhon Algorithm A New Variational Approach to Ground State Computation in Binary Planar Markov.
Multiplicative Bounds for Metric Labeling M. Pawan Kumar École Centrale Paris Joint work with Phil Torr, Daphne Koller.
Rounding-based Moves for Metric Labeling M. Pawan Kumar Center for Visual Computing Ecole Centrale Paris.
Probabilistic Graphical Models
Lena Gorelick joint work with O. Veksler I. Ben Ayed A. Delong Y. Boykov.
Learning a Small Mixture of Trees M. Pawan Kumar Daphne Koller Aim: To efficiently learn a.
Discrete Optimization Lecture 2 – Part I M. Pawan Kumar Slides available online
Discrete Optimization Lecture 4 – Part 2 M. Pawan Kumar Slides available online
Fast Parallel and Adaptive Updates for Dual-Decomposition Solvers Ozgur Sumer, U. Chicago Umut Acar, MPI-SWS Alexander Ihler, UC Irvine Ramgopal Mettu,
Probabilistic Inference Lecture 3 M. Pawan Kumar Slides available online
An Efficient Message-Passing Algorithm for the M-Best MAP Problem Dhruv Batra (Currently) Research Assistant Professor TTI-Chicago (Spring 2013) Assistant.
Algorithms for MAP estimation in Markov Random Fields Vladimir Kolmogorov University College London.
Discrete Optimization in Computer Vision M. Pawan Kumar Slides will be available online
Discrete Optimization Lecture 3 – Part 1 M. Pawan Kumar Slides available online
Probabilistic Inference Lecture 5 M. Pawan Kumar Slides available online
Dynamic Tree Block Coordinate Ascent Daniel Tarlow 1, Dhruv Batra 2 Pushmeet Kohli 3, Vladimir Kolmogorov 4 1: University of Toronto3: Microsoft Research.
Daphne Koller Message Passing Belief Propagation Algorithm Probabilistic Graphical Models Inference.
Update any set S of nodes simultaneously with step-size We show fixed point update is monotone for · 1/|S| Covering Trees and Lower-bounds on Quadratic.
Efficient Discriminative Learning of Parts-based Models M. Pawan Kumar Andrew Zisserman Philip Torr
Tractable Higher Order Models in Computer Vision (Part II) Slides from Carsten Rother, Sebastian Nowozin, Pusohmeet Khli Microsoft Research Cambridge Presented.
Discrete Optimization Lecture 2 – Part 2 M. Pawan Kumar Slides available online
Using Combinatorial Optimization within Max-Product Belief Propagation
Probabilistic Inference Lecture 2 M. Pawan Kumar Slides available online
1 Scale and Rotation Invariant Matching Using Linearly Augmented Tree Hao Jiang Boston College Tai-peng Tian, Stan Sclaroff Boston University.
Discrete Optimization Lecture 1 M. Pawan Kumar Slides available online
Maximizing Symmetric Submodular Functions Moran Feldman EPFL.
Tightening LP Relaxations for MAP using Message-Passing David Sontag Joint work with Talya Meltzer, Amir Globerson, Tommi Jaakkola, and Yair Weiss.
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts M. Pawan Kumar Daphne Koller Aim: To obtain accurate, efficient maximum a posteriori (MAP)
Rounding-based Moves for Metric Labeling M. Pawan Kumar École Centrale Paris INRIA Saclay, Île-de-France.
Introduction of BP & TRW-S
Learning a Region-based Scene Segmentation Model
Alexander Shekhovtsov and Václav Hlaváč
An Analysis of Convex Relaxations for MAP Estimation
≠ Particle-based Variational Inference for Continuous Systems
Expectation-Maximization & Belief Propagation
MAP Estimation of Semi-Metric MRFs via Hierarchical Graph Cuts
Discrete Inference and Learning
Clique Tree Algorithm: Computation
Presentation transcript:

Inference for Learning Belief Propagation

So far... Exact methods for submodular energies Approximations for non-submodular energies Move-making ( N_Variables >> N_Labels)

Motivating Application ImageDesired Output Only 10 variables !! head

Motivating Application headtorso uleg1 lleg1 uleg2 lleg2 uleg3 lleg3 uleg4 lleg4 Only 10 variables !! Thousands of Labels !! Millions of pairwise potentials!!

Belief Propagation E(f;  ) = ∑ a  a;f(a) + ∑ (a,b)  ab;f(a)f(b) MAP Estimation f* = argmin f E(f;  ) An algorithm for solving RECALL Potentials  a;i and  ab;ij Labeling f : V  L Exact for tree-structured models Pearl, 1988

Belief Propagation VaVa VbVb M ab Message M ab;i : V a ’s opinion on V b taking label i V b gathers information from V a Compute the belief B b;i

VaVa VbVb VaVa VbVb  a;0 +  ab;00 =  a;1 +  ab;10 = min M ab;0 = Two Variables M ab;i = min j  a;j +  ab;ji

VaVa VbVb  a;0 +  ab;01 =  a;1 +  ab;11 = min M ab;1 = Two Variables VaVa VbVb f(a) = 1 M ab;i = min j  a;j +  ab;ji

Two Variables VaVa VbVb f(a) = 1 VaVa VbVb B b;i =  b;i +∑ a M ab;i  b;0 + M ab;0 =  b;1 + M ab;1 = argmin f*(b) =

Two Variables VaVa VbVb f(a) = 1 VaVa VbVb B b;i =  b;i +∑ a M ab;i  b;0 + M ab;0 =  b;1 + M ab;1 = argmin f*(b) =

Two Variables VaVa VbVb f(a) = 1 VaVa VbVb B b;i =  b;i +∑ a M ab;i  b;0 + M ab;0 =  b;1 + M ab;1 = argmin f*(b) =

Three Variables VaVa VbVb VcVc Pass message from “a” to “b” as before l0l0 l1l1

Three Variables VaVa VbVb VcVc f(a) = 1 2 f(a) = 1 l0l0 l1l1

Three Variables VaVa VbVb VcVc Pass message from “b” to “c” as before 3 f(a) = 1 2 f(a) = 1 l0l0 l1l1

Three Variables VbVb VcVc f(a) = 1 2 f(a) = 1  b;0 +  bc;00 + M ab;0 = 6  b;1 +  bc;10 + M ab;1 = 8 min M bc;0 = M bc;i = min j  b;j +  bc;ji + ∑ n\c M nb;j l0l0 l1l1 VaVa 2 5

Three Variables VbVb VcVc f(a) = 1 2 f(a) = 1  b;0 +  bc;00 + M ab;0 = 6  b;1 +  bc;10 + M ab;1 = 8 min M bc;0 = M bc;i = min j  b;j +  bc;ji + ∑ n\c M nb;j 6 f(b) = 0 l0l0 l1l1 VaVa 2 5

Three Variables VbVb VcVc f(a) = 1 2 f(a) = 1  b;0 +  bc;01 + M ab;0 = 8  b;1 +  bc;11 + M ab;1 = 6 min M bc;1 = M bc;i = min j  b;j +  bc;ji + ∑ n\c M nb;j 6 f(b) = 0 l0l0 l1l1 VaVa 2 5

Three Variables VbVb VcVc f(a) = 1 2 f(a) = 1 M bc;i = min j  b;j +  bc;ji + ∑ n\c M nb;j 6 f(b) = 0  b;0 +  bc;01 + M ab;0 = 8  b;1 +  bc;11 + M ab;1 = 6 min M bc;1 = 6 f(b) = 1 l0l0 l1l1 VaVa 2 5

Three Variables VbVb VcVc f(a) = 1 2 f(a) = 1 6 f(b) = 0 6 f(b) = 1 B c;i =  c;i +∑ b M bc;i  c;0 + M bc;0 =  c;1 + M bc;1 = argmin f*(c) = l0l0 l1l1 VaVa 2 5

Three Variables VbVb VcVc f(a) = 1 2 f(a) = 1 6 f(b) = 0 6 f(b) = 1 B c;i =  c;i +∑ b M bc;i  c;0 + M bc;0 =  c;1 + M bc;1 = argmin f*(c) = l0l0 l1l1 VaVa 2 5

Three Variables VbVb VcVc f(a) = 1 2 f(a) = 1 6 f(b) = 0 6 f(b) = 1 B c;i =  c;i +∑ b M bc;i  c;0 + M bc;0 =  c;1 + M bc;1 = argmin f*(c) = l0l0 l1l1 VaVa 2 5

Three Variables VbVb VcVc f(a) = 1 2 f(a) = 1 6 f(b) = 0 6 f(b) = 1 B c;i =  c;i +∑ b M bc;i  c;0 + M bc;0 =  c;1 + M bc;1 = argmin f*(c) = l0l0 l1l1 VaVa 2 5

Tree-structured Models headtorso uleg1 lleg1 uleg2 lleg2 uleg3 lleg3 uleg4 lleg4 Message Passing

Tree-structured Models head torso uleg1 lleg1 uleg2 lleg2 uleg3 lleg3 uleg4 lleg4 Message Passing

Tree-structured Models head torso uleg1 lleg1 uleg2 lleg2 uleg3 lleg3 uleg4 lleg4 Message Passing

Tree-structured Models head torso uleg1 lleg1 uleg2 lleg2 uleg3 lleg3 uleg4 lleg4 Message Passing

Loopy Graphs VaVa VdVd VbVb VcVc Overcounting

Summary of BP Exact for trees Approximate MAP for general cases Convergence is not guaranteed M bc;i = min j  b;j +  bc;ji + ∑ n\a M nb;j B c;i =  c;i +∑ b M bc;i

Inference for Learning Linear Programming Relaxation

Linear Integer Programming min x g 0 T x s.t. g i T x ≤ 0 h i T x = 0 Linear function Linear constraints x is a vector of integers For example, x  {0,1} N Hard to solve !!

Linear Programming min x g 0 T x s.t. g i T x ≤ 0 h i T x = 0 Linear function Linear constraints x is a vector of reals Easy to solve!! For example, x  [0,1] N Relaxation

Roadmap Express MAP as an integer program Relax to a linear program and solve Round fractional solution to integers

V1V1 V2V2 Label ‘ 0 ’ Label ‘ 1 ’ Unary Cost Integer Programming Formulation Unary Cost Vector u = [ 5 Cost of V 1 = 0 2 Cost of V 1 = 1 ; 2 4 ]

V1V1 V2V2 Label ‘ 0 ’ Label ‘ 1 ’ Unary Cost Unary Cost Vector u = [ 5 2 ; 2 4 ] T Label vector x = [ 0 V 1  0 1 V 1 = 1 ; 1 0 ] T Integer Programming Formulation

V1V1 V2V2 Label ‘ 0 ’ Label ‘ 1 ’ Unary Cost Unary Cost Vector u = [ 5 2 ; 2 4 ] T Label vector x = [ 01; 1 0 ] T Sum of Unary Costs = ∑i ui xi∑i ui xi Integer Programming Formulation

V1V1 V2V2 Label ‘ 0 ’ Label ‘ 1 ’ Pairwise Cost Integer Programming Formulation 0 Cost of V 1 = 0 and V 1 = Cost of V 1 = 0 and V 2 = 0 3 Cost of V 1 = 0 and V 2 = Pairwise Cost Matrix P

V1V1 V2V2 Label ‘ 0 ’ Label ‘ 1 ’ Pairwise Cost Integer Programming Formulation Pairwise Cost Matrix P Sum of Pairwise Costs ∑ i<j P ij x i x j = ∑ i<j P ij X ij X = xx T

Integer Programming Formulation Constraints Uniqueness Constraint ∑ x i = 1 i  V a Integer Constraints x i  {0,1} X = x x T

Integer Programming Formulation x* = argmin ∑ u i x i +∑ P ij X ij x i  {0,1} X = x x T ∑ x i = 1 i  V a

Roadmap Express MAP as an integer program Relax to a linear program and solve Round fractional solution to integers

Integer Programming Formulation x* = argmin ∑ u i x i +∑ P ij X ij ∑ x i = 1 i  V a x i  {0,1} X = x x T Convex Non-Convex

Integer Programming Formulation x* = argmin ∑ u i x i +∑ P ij X ij ∑ x i = 1 i  V a x i  [0,1] X = x x T Convex Non-Convex

Integer Programming Formulation x* = argmin ∑ u i x i +∑ P ij X ij ∑ x i = 1 i  V a x i  [0,1] X ij  [0,1] Convex ∑ X ij = x i j  V b

Linear Programming Formulation x* = argmin ∑ u i x i +∑ P ij X ij ∑ x i = 1 i  V a x i  [0,1] X ij  [0,1] Convex ∑ X ij = x i j  V b Schlesinger, 76; Chekuri et al., 01; Wainwright et al., 01

Roadmap Express MAP as an integer program Relax to a linear program and solve Round fractional solution to integers

Properties Dominate many convex relaxations Best known multiplicative bounds 2 for Potts (uniform) energies 2 + √2 for Truncated linear energies O(log n) for metric labeling Matched by move-making Kumar and Torr, 2008; Kumar and Koller, UAI 2009 Kumar, Kolmogorov and Torr, 2007

Algorithms Tree-reweighted message passing (TRW) Max-product linear programming (MPLP) Dual decomposition Komodakis and Paragios, ICCV 2007