Today in Pre-Calculus Go over homework Notes: (need book and calculator) –Modeling Homework.

Slides:



Advertisements
Similar presentations
 Polynomial Functions  Exponents-  Coefficients-  Degree-  Leading Coefficient-
Advertisements

Awesome Assorted Applications!!! (alliteration!!!) Sec. 2.1c, you are too cool…
Vertical 1D Motion Problem BELLWORK!!. On the Moon A Moon rock ON THE MOON is thrown upward with velocity of 7 m/s. After 7 s, it has a downward velocity.
Vertical 1D Motion Problem. On the Moon A Moon rock ON THE MOON is thrown upward with velocity of 7 m/s. After 7 s, it has a downward velocity of 4 m/s.
Today in Precalculus Go over homework Notes: Simulating Projectile Motion Day 2 Homework.
7-5 solving quadratic equations
Today’s Topic Free Fall What is Free Fall? Free Fall is when an object moves downward (vertically) only as the result of gravity.
 Smoke Jumpers parachute into locations to suppress forest fires  When they exit the airplane, they are in free fall until their parachutes open 
Rates of Change Rectilinear Motion Lesson 3.4 Rate of Change Consider the linear function y = m x + b rate at which y is changing with respect to x is.
Ch 2 – Polynomial and Rational Functions 2.1 – Quadratic Functions.
10 extra topic: Projectile Motion Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002 Fort Pulaski, GA.
Factoring Finding factors given a Graph Medina1. Finding factors given a Graph *Note: If the function only has one x-intercept, there is not two different.
Definition of a Polynomial Function Let n be a nonnegative integer and let a n, a n-1,…, a 2, a 1, a 0, be real numbers with a n  0. The function defined.
Vector-Valued Functions 12 Copyright © Cengage Learning. All rights reserved.
The Height Equation. h= ending height g = gravity constant (32 if feet, 9.8 if meters) v 0 = initial velocity h 0 = initial height t = time.
10.4 Projectile Motion Greg Kelly, Hanford High School, Richland, Washington Photo by Vickie Kelly, 2002 Fort Pulaski, GA.
Projectile Motion. We are going to launch things, and then find out how they behave.
PreCalculus. Bell Ringer: pg 129 #46 HW Requests: pg 152 #1-10 a. The average of three numbers is 70. When the smallest of the three numbers is replaced.
10.4 Projectile Motion Fort Pulaski, GA. One early use of calculus was to study projectile motion. In this section we assume ideal projectile motion:
Solving Inequalities Algebraically Section P.6 – the last section of the chapter!!!
The number of gallons of water in a 500,000 gallon tank t minutes after the tank started to drain is G(t) = 200(50-4t) 2. a.) What is the average rate.
5.6: The Quadratic Formula and the Discriminant Objectives: Students will be able to… Solve a quadratic equation using the quadratic formula Use the discriminant.
What information can we visually determine from this Quadratic Graph? Vertex Vertical Stretch Factor (4, -3) Over 1, up 1 Over 2, up 4 Normal Pattern.
Sec. 4.1 Antiderivatives and Indefinite Integration By Dr. Julia Arnold.
Chapter 2.2 Objectives and Vocabulary acceleration deceleration Newton's second law Define and calculate acceleration. Explain the relationship between.
WHAT DOES IT MEAN TO SOLVE QUADRATIC FUNCTIONS? WHAT ARE ALL OF THE…
Lesson 9-8 Warm-Up.
PROJECTILE MOTION.
Today in Algebra 2 Go over homework Need a graphing calculator. More on Graphing Quadratic Equations Homework.
Quadratics Review y = x 2. Quadratics Review This graph opens upwards y = x 2.
Pre-Calculus 2.1 Quadratic Functions. Definition Quadratic Function-If f is a polynomial function and r 1 is a real number, the following statements are.
Real Life Quadratic Equations Maximization Problems Optimization Problems Module 10 Lesson 4:
Lesson Velocity PVA, derivatives, anti-derivatives, initial value problems, object moving left/right and at rest.
An Application Activity
Section 10.6 Solve Any Quadratic Equation by using the Quadratic Formula.
The Quadratic Formula. y = ax 2 + bx + c (Standard Form) * To apply the formula, you must write the equation in standard form first! x 2 +5x = 14 (not.
Review Topic A toy rocket is launched and has the trajectory that can be modeled by s(t) = t – 16t 2 a)What is the height at 2 seconds? b)What is.
Free Fall = Vertical Velocity = Vertical Velocity An object falling free of all restraints An object falling free of all restraints No friction No friction.
So that’s what he's thinking about 3.4. Original Function 1 st Derivative 2 nd Derivative 3 rd Derivative.
Unit 3 - Polynomial, Power and Rational Functions 2.1 Linear & Quadratic Functions Recognize and graph linear and quadratic functions Use these functions.
Chapter 1.3 Acceleration. Types of Acceleration  Acceleration is a vector quantity  Positive Acceleration  1. when change in magnitude and direction.
EXAMPLE 5 Solve a vertical motion problem A juggler tosses a ball into the air. The ball leaves the juggler’s hand 4 feet above the ground and has an initial.
Quadratic Functions; Parabolas Determining if a Function is Quadratic Highest exponent in the equation is 2, no more no less.
Chapter 3 sections 3.3 and 3.4 What is differentiation and what are the methods of differentiation?
Algebra Solving Quadratic Equations by the Quadratic Formula.
9-6A Solving Quadratic Eq.’s with Quadratic Formula Algebra 1.
Warm - up 1) Enter the data into L1 and L2 and calculate a quadratic regression equation (STAT  calc Quadreg). Remember: time – x distance – y. 2) Find.
3-4 VELOCITY & OTHER RATES OF CHANGE. General Rate of Change The (instantaneous) rate of change of f with respect to x at a is the derivative! Ex 1a)
Sec. 4.1 Antiderivatives and Indefinite Integration
Solving Inequalities Algebraically
Awesome Assorted Applications!!! (2.1c alliteration!!!)
10.4 Projectile Motion Fort Pulaski, GA Mackinaw Island, Michigan
Physics 1 Dimensional Motion Chapter 2 Section 3 – pages 60-65
v = v0 + a ∆t ∆x = v0∆t + 1/2 a∆t2 v2 = v02 + 2a∆x
By: Jeffrey Bivin Lake Zurich High School
A function F is the antiderivative of f if
By: Jeffrey Bivin Lake Zurich High School
Motion with constant acceleration
Warm-up Activity Determine which of the following are polynomial functions. If so, state the degree and leading coefficient of each polynomial. f(x) =
A function F is the Antiderivative of f if
Projectile Motion A projectile is an object moving in two or three dimensions only under the influence of gravity.
1.6 Acceleration Due to Gravity.
Calculations and Worked Examples
Acceleration.
1.5 – Projectile Motion (pg )
Objects Thrown Vertically Upward – Free Fall 2
Solving Quadratic Equations by Finding Square Roots
1.6 Linear Programming Pg. 30.
Differential Equations
Freefall.
Presentation transcript:

Today in Pre-Calculus Go over homework Notes: (need book and calculator) –Modeling Homework

Vertical Free Fall Motion The height s and vertical velocity v of an object in free fall are given by s(t) = -½ gt 2 + v 0 t + s 0 and v(t) = -gt + v 0 Where t is time (in seconds), g ≈32 ft/sec 2 ≈9.8m/sec 2 is the acceleration due to gravity, v 0 is the initial vertical velocity of the object, and s o is its initial height.

Example Page 184: Number 61 a)s 0 = 83 ft; v 0 =92 ft/sec s(t) = -½ (32)t t + 83 = -16t t +83 So maximum height is ft. b)s(t) = 0 (use quadratic formula) sec c)v(t) = -32t + 92 v(6.543) = -32(6.543) + 92 = ft/sec

Example Number 59 a) Revenue = quantity  price R(x) = (26,000 – 1,000x)( x) = 13, x – 50x 2 b) Graph it so you can see the max and x-intercept c) h = -800/(2  -50) = 8 So Revenue is maximized when x = 8 Price: (8)= $0.90 Revenue : 13, (8) – 50(8) 2 = $16,200

Homework Pg. 184: 58, 62, 63