Minimal Conductivity in Bilayer Graphene József Cserti Eötvös University Department of Physics of Complex Systems International School, MCRTN’06, Keszthely,

Slides:



Advertisements
Similar presentations
Exciton formation in graphene bilayer PHYSICAL REVIEW B 78, (2008) Raoul Dillenschneider, and Jung Hoon Han Presented by Wan-Ju Li 02/25/2009 PHYSICAL.
Advertisements

Chiral Tunneling and the Klein Paradox in Graphene M. I. Katsnelson, K
Observation of a possible Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state in CeCoIn 5 Roman Movshovich Andrea Bianchi Los Alamos National Laboratory, MST-10.
Spintronics with topological insulator Takehito Yokoyama, Yukio Tanaka *, and Naoto Nagaosa Department of Applied Physics, University of Tokyo, Japan *
Graphene: why πα? Louis Kang & Jihoon Kim
Plasmonics in double-layer graphene
Chiral symmetry breaking in graphene: a lattice study of excitonic and antiferromagnetic phase transitions Ulybyshev Maxim, ITEP, MSU.
1 T-invariant Decomposition and the Sign Problem in Quantum Monte Carlo Simulations Congjun Wu Reference: Phys. Rev. B 71, (2005); Phys. Rev. B 70,
Quantum Chemistry Revisited Powerpoint Templates.
The Persistent Spin Helix Shou-Cheng Zhang, Stanford University Banff, Aug 2006.
Chaos and interactions in nano-size metallic grains: the competition between superconductivity and ferromagnetism Yoram Alhassid (Yale) Introduction Universal.
Spin transport in spin-orbit coupled bands
Spin Waves in Stripe Ordered Systems E. W. Carlson D. X. Yao D. K. Campbell.
Electronic properties and the quantum Hall effect in bilayer graphene Vladimir Falko.
Transport properties of mesoscopic graphene Björn Trauzettel Journées du graphène Laboratoire de Physique des Solides Orsay, Mai 2007 Collaborators:
Physics of Graphene A. M. Tsvelik. Graphene – a sheet of carbon atoms The spectrum is well described by the tight- binding Hamiltonian on a hexagonal.
Ordered States of Adatoms in Graphene V. Cheianov, O. Syljuasen, V. Fal’ko, and B. Altshuler.
Hofstadter’s Butterfly in the strongly interacting regime
Quasiparticle scattering and local density of states in graphene Cristina Bena (SPhT, CEA-Saclay) with Steve Kivelson (Stanford) C. Bena et S. Kivelson,
High-field ground state of graphene at Dirac Point J. G. Checkelsky, Lu Li and N.P.O. Princeton University 1.Ground state of Dirac point in high fields.
Gabriel Cwilich Yeshiva University NeMeSyS Symposium 10/26/2008 Luis S. Froufe Perez Ecole Centrale, Paris Juan Jose Saenz Univ. Autonoma, Madrid Antonio.
Is graphene a strongly correlated electron system ? Antonio H. Castro Neto Buzios, August 2008.
A. Ramšak* J. Mravlje T. Rejec* R. Žitko J. Bonča* The Kondo effect in multiple quantum dot systems and deformable molecules
Microwave Billiards, Photonic Crystals and Graphene
Microscopic nematicity in iron superconductors Belén Valenzuela Instituto de Ciencias Materiales de Madrid (ICMM-CSIC) In collaboration with: Laura Fanfarillo.
Ballistic transport,hiral anomaly and radiation from the electron hole plasma in graphene Ballistic transport, chiral anomaly and radiation from the electron.
Radiation induced photocurrent and quantum interference in n-p junctions. M.V. Fistul, S.V. Syzranov, A.M. Kadigrobov, K.B. Efetov.
Graduate School of Engineering Science, Osaka University
KONDO EFFECT IN BILAYER GRAPHENE Diego Mastrogiuseppe, Sergio Ulloa & Nancy Sandler Department of Physics & Astronomy Ohio University, Athens, OH.
Non-Fermi liquid vs (topological) Mott insulator in electronic systems with quadratic band touching in three dimensions Igor Herbut (Simon Fraser University,
グラフェン量子ホール系の発光 量子ホール系の光学ホール伝導度 1 青木研究室 M2 森本高裕 青木研究室 M2 森本高裕.
T. K. T. Nguyen, M. N. Kiselev, and V. E. Kravtsov The Abdus Salam ICTP, Trieste, Italy Effect of magnetic field on thermoelectric coefficients of a single.
Effects of Interaction and Disorder in Quantum Hall region of Dirac Fermions in 2D Graphene Donna Sheng (CSUN) In collaboration with: Hao Wang (CSUN),
Dynamics of Anderson localization
Quantum pumping and rectification effects in interacting quantum dots Francesco Romeo In collaboration with : Dr Roberta Citro Prof. Maria Marinaro University.
Graphene beyond the standard model: including trigonal warping, spin-orbit coupling and strain Tobias Stauber Nuno Peres (U. Minho), Paco Guinea (ICMM),
APS -- March Meeting 2011 Graphene nanoelectronics from ab initio theory Jesse Maassen, Wei Ji and Hong Guo Department of Physics, McGill University, Montreal,
Wigner molecules in carbon-nanotube quantum dots Massimo Rontani and Andrea Secchi S3, Istituto di Nanoscienze – CNR, Modena, Italy.
Graphene - Electric Properties
The Helical Luttinger Liquid and the Edge of Quantum Spin Hall Systems
Graphene bipolar heterojunctions SD LG V BG C BG C LG V LG V SD -Density in GLs can be n or p type -Density in LGR can be n’ or p’ type We expect two Dirac.
1/3/2016SCCS 2008 Sergey Kravchenko in collaboration with: Interactions and disorder in two-dimensional semiconductors A. Punnoose M. P. Sarachik A. A.
Collin Broholm Johns Hopkins University and NIST Center for Neutron Research Quantum Phase Transition in a Quasi-two-dimensional Frustrated Magnet M. A.
Mott phases, phase transitions, and the role of zero-energy states in graphene Igor Herbut (Simon Fraser University) Collaborators: Bitan Roy (SFU) Vladimir.
Optical pure spin current injection in graphene Julien Rioux * and Guido Burkard Department of Physics, University of Konstanz, D Konstanz, Germany.
Graphene as a new page in Solid State Physics L.A. Falkovsky Landau Institute for Theoretical Physics Institute of High Pressure Physics.
Dept. of Electrical and Electronic Engineering The University of Hong Kong Page 1 IMWS-AMP 2015 Manipulating Electromagnetic Local Density of States by.
M.M. Asmar & S.E. Ulloa Ohio University. Outline Motivation. The studied system and the mathematical approach. Results and analysis. Conclusions.
東京大学 青木研究室 D1 森本高裕 東京大学 青木研究室 D1 森本高裕 2009 年 7 月 10 日 筑波大学 Optical Hall conductivity in ordinary and graphene QHE systems Optical Hall conductivity in.
1 The phonon Hall effect – NEGF and Green- Kubo treatments Jian-Sheng Wang, National University of Singapore.
Anisotropic exactly solvable models in the cold atomic systems Jiang, Guan, Wang & Lin Junpeng Cao.
Graphene: electrons in the flatland Antonio H. Castro Neto Seoul, September 2008.
Shot noise in graphene and the Coulomb interaction Anatoly Golub and Baruch Horovitz Ben Gurion University, Israel arXiv (today, arXiv: ) 1.Non-interacting:
Dirac fermions with zero effective mass in condensed matter: new perspectives Lara Benfatto* Centro Studi e Ricerche “Enrico Fermi” and University of Rome.
Strong coupling problems in condensed matter and the AdS/CFT correspondence HARVARD arXiv: Reviews: Talk online: sachdev.physics.harvard.edu arXiv:
Antiferromagnetic Resonances and Lattice & Electronic Anisotropy Effects in Detwinned La 2-x Sr x CuO 4 Crystals Crystals: Yoichi Ando & Seiki Komyia Adrian.
Long-Range Frustration among Unfrozen Vertices in the Ground-State Configurations of a Spin-Glass System Haijun Zhou 海军 周 Institute of Theoretical Physics,
Quantum Hall transition in graphene with correlated bond disorder T. Kawarabayshi (Toho University) Y. Hatsugai (University of Tsukuba) H. Aoki (University.
Axion electrodynamics on the surface of topological insulators
Dirac’s inspiration in the search for topological insulators
Flat Band Nanostructures Vito Scarola
Thermal and electrical quantum Hall effects in ferromagnet — topological insulator — ferromagnet junction V. Kagalovsky 1 and A. L. Chudnovskiy 2 1 Shamoon.
Tunable excitons in gated graphene systems
Graphene Transistors for Microwave Applications and Beyond Mahesh Soni1, Satinder Kumar Sharma1, Ajay Soni2 1School.
Quantum transport in disordered graphene
Spin-orbit interaction in a dual gated InAs/GaSb quantum well
Electronic properties in moiré superlattice
Conductance of nanosystems with interaction
The Free Electron Fermi Gas
Nonlinear response of gated graphene in a strong radiation field
Presentation transcript:

Minimal Conductivity in Bilayer Graphene József Cserti Eötvös University Department of Physics of Complex Systems International School, MCRTN’06, Keszthely, Hungary, Aug. 27- Sept. 1, J. Cs.: cond-mat/

Near zeros concentrations the longitudinal conductivity is of the order of Independent of temperature and magnetic field Minimal Conductivity in Bilayer Graphene K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal'ko, M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A. K. Geim, Nature Physics 2, 177 (2006)

Theoretical results for single layer graphene Single layer graphene: A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, PRB 50, 7526 (1994) E. Fradkin, PRB 63, 3263 (1986) P. A. Lee, PRL 71, 1887 (1993) E. V. Gorbar, V. P. Gusynin, V. A. Miransky, and I. A. Shovkovy, PRB 66, (2002) V. P. Gusynin and S. G. Sharapov, PRL 95, (2005) N. M. R. Peres, F. Guinea, and A. H. Castro Neto, PRB 73, (2006) M. I. Katsnelson, Eur. J. Phys B 51, 157 (2006) J. Tworzyd lo, B. Trauzettel, M. Titov, A. Rycerz, C.W.J. Beenakker, PRL 96, (2006) K. Ziegler, cond-mat/ K. Nomura and A. H. MacDonald, cond-mat/ L. A. Falkovsky and A. A. Varlamov, cond-mat/ Short range scattering Coulumb scattering

M. Koshino and T. Ando, cond-mat/ M. I. Katsnelson, cond-mat/ Theoretical results for bilayer graphene strong-disorder regime weak-disorder regime

E. McCann and V. I. Fal'ko, Phys. Rev. Lett. 96, (2006) Hamiltonian for bilayer graphene J=1 single layer J=2 bilayer graphene Equivalent form: Pseudo spin, Pauli matrices

Plane wave solution: Eigenvalues: Green’s function: Dirac cone 2 by 2 matrix

Kubo formula conductivity tensor: correlation function: where Fermi function: A.Bernevig, PRB 71, (2005) (derived for spintronic systems)

Result per valley per spin

where Equivalent form: A. W. W. Ludwig, M. P. A. Fisher, R. Shankar, and G. Grinstein, PRB 50, 7526 (1994) Second method

Result per valley per spin

Including the two valleys and the electron spin (factor of 4) Kubo formula Second method The two definitions yield two different results for the longitudinal conductivity of perfect graphenes But numerically they are close to each other

The conductivity proportional with number of layers (J) Single layer graphene (J=1): Our result using the 2 nd method agrees with many earlier predictions Our result for bilayer is close to the experimental one Our result agrees with M. Koshino and T. Ando (cond-mat/ ) result derived for the case of strong disorder The two methods give two different results for the longitudinal conductivity !?! The minimal conductivity in graphene systems still remains a theoretical challenge in the future Conclusions