Non-Abelian Josephson effect and fractionalized vortices Wu-Ming Liu (刘伍明) ( Institute of Physics, CAS )

Slides:



Advertisements
Similar presentations
Creating new states of matter:
Advertisements

Trapped ultracold atoms: Bosons Bose-Einstein condensation of a dilute bosonic gas Probe of superfluidity: vortices.
Dynamics of Spin-1 Bose-Einstein Condensates
Rotations and quantized vortices in Bose superfluids
Fermi-Bose and Bose-Bose quantum degenerate K-Rb mixtures Massimo Inguscio Università di Firenze.
Emergent Majorana Fermion in Cavity QED Lattice
Ultracold Quantum Gases: An Experimental Review Herwig Ott University of Kaiserslautern OPTIMAS Research Center.
Numerical Method for Computing Ground States of Spin-1 Bose-Einstein Condensates Fong Yin Lim Department of Mathematics and Center for Computational Science.
D-wave superconductivity induced by short-range antiferromagnetic correlations in the Kondo lattice systems Guang-Ming Zhang Dept. of Physics, Tsinghua.
Coherence, Dynamics, Transport and Phase Transition of Cold Atoms Wu-Ming Liu (刘伍明) (Institute of Physics, Chinese Academy of Sciences)
Ultracold Alkali Metal Atoms and Dimers: A Quantum Paradise Paul S. Julienne Atomic Physics Division, NIST Joint Quantum Institute, NIST/U. Md 62 nd International.
Lattice modulation experiments with fermions in optical lattice Dynamics of Hubbard model Ehud Altman Weizmann Institute David Pekker Harvard University.
Interacting Ultra Cold Atoms a brief overview Fei Zhou PITP, University of British Columbia at Quantum Nanoscience conference, Noosa Blue, Australia, Jan.
Fermi surface change across quantum phase transitions Phys. Rev. B 72, (2005) Phys. Rev. B (2006) cond-mat/ Hans-Peter Büchler.
Hydrodynamic transport near quantum critical points and the AdS/CFT correspondence.
Spin Correlated States in Optical Lattices Fei Zhou ( ITP, Utrecht ) April 15, 2003 PIMS, Banff National Park, Canada Acknowledgement: E.Demler (Harvard),
World of ultracold atoms with strong interaction National Tsing-Hua University Daw-Wei Wang.
World of zero temperature --- introduction to systems of ultracold atoms National Tsing-Hua University Daw-Wei Wang.
Jairo Sinova 19 th of September 2002 Spinning a BEC away: quantum fluctuations, rotating BECs and 2D vortex matter Reference: J. Sinova et al, Phys. Rev.
Anderson localization in BECs
Quantum Entanglement of Rb Atoms Using Cold Collisions ( 韓殿君 ) Dian-Jiun Han Physics Department Chung Cheng University.
1 Simulation and Detection of Relativistic Effects with Ultra-Cold Atoms Shi-Liang Zhu ( 朱诗亮 ) School of Physics and Telecommunication.
Spinor condensates beyond mean-field
Fractional Quantum Hall states in optical lattices Anders Sorensen Ehud Altman Mikhail Lukin Eugene Demler Physics Department, Harvard University.
Temperature scale Titan Superfluid He Ultracold atomic gases.
Magnetism of spinor BEC in an optical lattice
Coherence and decay within Bose-Einstein condensates – beyond Bogoliubov N. Katz 1, E. Rowen 1, R. Pugatch 1, N. Bar-gill 1 and N. Davidson 1, I. Mazets.
Selim Jochim, Universität Heidelberg
University of Trento INFM. BOSE-EINSTEIN CONDENSATION IN TRENTO SUPERFLUIDITY IN TRAPPED GASES University of Trento Inauguration meeting, Trento
Dynamics of Quantum- Degenerate Gases at Finite Temperature Brian Jackson Inauguration meeting and Lev Pitaevskii’s Birthday: Trento, March University.
Bose-Einstein Condensate Fundaments, Excitation and Turbulence Vanderlei Salvador Bagnato Instituto de Física de São Carlos – Universidade de São Paulo.
Localization of phonons in chains of trapped ions Alejandro Bermúdez, Miguel Ángel Martín-Delgado and Diego Porras Department of Theoretical Physics Universidad.
Universal thermodynamics of a strongly interacting Fermi gas Hui Hu 1,2, Peter D. Drummond 2, and Xia-Ji Liu 2 1.Physics Department, Renmin University.
Han Pu Rice University Collaborators: Lei Jiang (NIST/JQI) Hui Hu, Xia-Ji Liu (Swinburne) Yan Chen (Fudan U.) 2013 Hangzhou Workshop on Quantum Matter.
VARIATIONAL APPROACH FOR THE TWO-DIMENSIONAL TRAPPED BOSE GAS L. Pricoupenko Trento, June 2003 LABORATOIRE DE PHYSIQUE THEORIQUE DES LIQUIDES Université.
Non-Abelian Josephson effect Wu-Ming Liu ( 刘伍明 ) (Institute of Physics, Chinese Academy of Sciences) ( 中国科学院物理所 )
Condensed exciton-polaritons in microcavity traps C. Trallero-Giner Centro Latinoamericano de Fisica, Rio de Janeiro, Brazil Quito/Encuentro de Fisica/2013.
Wave Packet Echo in Optical Lattice and Decoherence Time Chao Zhuang U(t) Aug. 15, 2006 CQISC2006 University of Toronto.
Elastic collisions. Spin exchange. Magnetization is conserved. Inelastic collisions. Magnetization is free. Magnetic properties of a dipolar BEC loaded.
Correlated States in Optical Lattices Fei Zhou (PITP,UBC) Feb. 1, 2004 At Asian Center, UBC.
Integrable model in Bose-Einstein condensates
Lecture IV Bose-Einstein condensate Superfluidity New trends.
Spin-3 dynamics study in a chromium BEC Laboratoire de Physique des Lasers Université Paris Nord Villetaneuse - France Olivier GORCEIX CLEO/Europe-EQEC.
Collaborations: L. Santos (Hannover) Former members: R. Chicireanu, Q. Beaufils, B. Pasquiou, G. Bismut A.de Paz (PhD), A. Sharma (post-doc), A. Chotia.
1 Manipulation of Artificial Gauge Fields for Ultra-cold Atoms for Ultra-cold Atoms Shi-Liang Zhu ( Shi-Liang Zhu ( 朱 诗 亮 Laboratory.
Experimental determination of Universal Thermodynamic Functions for a Unitary Fermi Gas Takashi Mukaiyama Japan Science Technology Agency, ERATO University.
Application of the operator product expansion and sum rules to the study of the single-particle spectral density of the unitary Fermi gas Seminar at Yonsei.
QUEST - Centre for Quantum Engineering and Space-Time Research Multi-resonant spinor dynamics in a Bose-Einstein condensate Jan Peise B. Lücke, M.Scherer,
The anisotropic excitation spectrum of a chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Sorbonne Paris Cité Villetaneuse.
Atoms in optical lattices and the Quantum Hall effect Anders S. Sørensen Niels Bohr Institute, Copenhagen.
Optical lattices for ultracold atomic gases Sestri Levante, 9 June 2009 Andrea Trombettoni (SISSA, Trieste)
Quantum exotic states in correlated topological insulators Su-Peng Kou ( 寇谡鹏 ) Beijing Normal University.
Pairing Gaps in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems Cheng Chin JFI and Physics, University of Chicago Exp.: Rudolf.
Condensed matter physics in dilute atomic gases S. K. Yip Academia Sinica.
B. Pasquiou (PhD), G. Bismut (PhD) B. Laburthe, E. Maréchal, L. Vernac, P. Pedri, O. Gorceix (Group leader) Spontaneous demagnetization of ultra cold chromium.
Rotating FFLO Superfluid in cold atom gases Niigata University, Youichi Yanase Tomohiro Yoshida 2012 Feb 13, GCOE シンポジウム「階層の連結」, Kyoto University.
Hidden Symmetry and Quantum Phases in Spin 3/2 Cold Atomic Systems
The Center for Ultracold Atoms at MIT and Harvard Strongly Correlated Many-Body Systems Theoretical work in the CUA Advisory Committee Visit, May 13-14,
Precision collective excitation measurements in the BEC-BCS crossover regime 15/06/2005, Strong correlations in Fermi systems A. Altmeyer 1, S. Riedl 12,
Functional Integration in many-body systems: application to ultracold gases Klaus Ziegler, Institut für Physik, Universität Augsburg in collaboration with.
1 Vortex configuration of bosons in an optical lattice Boulder Summer School, July, 2004 Congjun Wu Kavli Institute for Theoretical Physics, UCSB Ref:
EMMI Workshop, Münster V.E. Demidov, O. Dzyapko, G. Schmitz, and S.O. Demokritov Münster, Germany G.A. Melkov, Ukraine A.N. Slavin, USA V.L.
Ultracold gases Jami Kinnunen & Jani-Petri Martikainen Masterclass 2016.
strongly interacting fermions: from spin mixtures to mixed species
Spin-Orbit Coupling Effects in Bilayer and Optical Lattice Systems
BOSE-EINSTEIN CONDENSATES A REVIEW OF EXPERIMENTAL RESULTS
Novel quantum states in spin-orbit coupled quantum gases
SOC Fermi Gas in 1D Optical Lattice —Exotic pairing states and Topological properties 中科院物理研究所 胡海平 Collaborators : Chen Cheng, Yucheng Wang, Hong-Gang.
周黎红 中国科学院物理研究所 凝聚态理论与材料计算实验室 指导老师: 崔晓玲 arXiv:1507,01341(2015)
Institute for Theoretical Physics,
Presentation transcript:

Non-Abelian Josephson effect and fractionalized vortices Wu-Ming Liu (刘伍明) ( Institute of Physics, CAS ) Supported by NSFC, MOST, CAS

Collaborators Jiang-Ping Hu (Purdue Univ) An-Chun Ji Zhi-Bing Li (Zhongshan Univ) Ran Qi Qing Sun Xin-Cheng Xie (Oklahoma State Univ) Xiao-Lu Yu Yan-Yang Zhang Fei Zhou (British Columbia Univ)

1. Introduction 2. Non-Abelian Josephson effect 3. Josephson effect of photons 4. Localization 5. Fractionalized vortex 6. Outlook Outline

1.1. BEC of ideal gas 7Li6Li 1. Introduction

1.2. BEC in dilute gas

1.3. BEC near Feshbach resonance

1.4. BEC in optical lattices

1.5. Fermionic condensation

1.6. Molecule condensation? J.G. Danzl et al. Science 321, 1062 (2008)

R. Qi, X.L. Yu, Z.B. Li, W.M. Liu, Non-Abelian Josephson effect between two F=2 spinor Bose-Einstein condensates in double optical traps, Phys. Rev. Lett. 102, (2009) 2. Non-Abelian Jesephson effect

Abelian case: U(1) × U(1)  U(1) diagonal two goldstone modes  one gapless mode (goldstone mode) and one gapped mode (pseudo goldstone mode) Non-Abelian case: SO(N), U(1) SO(N)… SO(N), U(1) × SO(N)… Multiple Multiple pseudo goldstone modes

No Josephson effect U(1)XU(1) Nambu-Goldstone modes

Josephson effect Single mode: U(1)XU(1) Nambu-Goldstone modes Many modes: S=1, U(1)XS(2); S=2, U(1)XSO(3) Pseudo Nambu-Goldstone modes

Ground states of S=2 boson Ferromagnetic phase Antiferromagnetic phase Cyclic phase

Ferromagnetic phase U(1)XU(1) Nambu-Goldstone modes

Antiferromagnetic phase U(1)XSO(3) Pseudo Nambu-Goldstone modes

Cyclic phase U(1)XSO(3) Pseudo Nambu-Goldstone modes

Antiferromagnetic phase m=0

m=±2

Fig. 2 The frequencies of pseudo Goldstone modes as a function of coupling parameter J in the case of antiferromagnetic phase.

Cyclic phase m=±1 m=0,±2

Fig. 3 The frequencies of pseudo Goldstone modes as a function of coupling parameter J in the case of cyclic phase.

Experimental parameter  Rb-87, F=2  AFM: c 2 0  Cyclic: c 1 >0, c 2 >0  c 1 :0-10nK, c 2 :0-0.2nK, c 0 :150nK  fluctuation time scale-10ms  pseudo Goldstone modes:1-10nk

Experimental signatures  Initiate a density oscillation  Detect time dependence of atom numbers in different spin component ◆ Measure density oscillation in each of spin components  Non-Abelian Josephson effect

A.C. Ji, Q. Sun, X. C. Xie, W. M. Liu, Josephson effects of photons in two weakly-inked microcavities, Phys. Rev. Lett. 102, (2009) 3. Jesephson effect of photons

Fig. 1 Experimental setup and control of coupling along resonator axis

Fig. 2 Excitations of a polariton condensate

Fig. 3 Chemical potential-current relation in polariton condensates

4. Localization J. Billy et al., Nature 453, 891 (2008).

G. Roati et al., Nature 453, 895 (2008)

Y.Y. Zhang, J.P. Hu, B.A. Bernevig, X.R. Wang, X.C. Xie, W.M. Liu, Localization and Kosterlitz-Thouless transition in disordered graphene, Phys. Rev. Lett. 102, (2009)

A B AA B B

Fig. 1 The scaling function

Fig. 2 Typical configurations of local currents In (red arrows) and potential V n (color contour) on two sides of K-T type MIT with N=56X32 sites, \xi=1:73a, n I =1% and E F =0:1t. (a) W=1:1t (delocalized); (b) W=2:9t (localized).

A.C. Ji, W.M. Liu, J.L. Song, F. Zhou, Dynamical creation of fractionalized vortices and vortex lattices, Phys. Rev. Lett. 101, (2008) 5. Half vortex

Dynamical creation of fractionalized vortices and vortex lattices Fig.1 Density and spin density of an individual half vortex Fig. 2 Interaction potentials between two half vortex

Fig. 3 Creation of a half-quantum vortex. The bottom panel shows that a single half vortex is formed at t=600 ms after magnetic trap has been adiabatically switched off.

(a) Creation of a triangular integer vortex lattice (b) A square half vortex lattice formation at t=1600 ms

6. Outlook

Thanks!