Social Media Marketing Analytics 社群網路行銷分析 1 1032SMMA06 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 探索性因素分析 (Exploratory Factor Analysis) Min-Yuh.

Slides:



Advertisements
Similar presentations
Social Media Marketing Research 社會媒體行銷研究 SMMR08 TMIXM1A Thu 7,8 (14:10-16:00) L511 Exploratory Factor Analysis Min-Yuh Day 戴敏育 Assistant Professor.
Advertisements

第二章 研究主題(研究題 目)與研究問題.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
本章結構 前言 符號介紹與立透法則 指數機率分配 基本無限來源模式 基本有限來源模式 等候系統的經濟分析-最佳化 進階等候模式 16-1.
Social Media Marketing Analytics 社群網路行銷分析 SMMA02 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 社群網路行銷分析 (Social Media Marketing Analytics) Min-Yuh.
「大一新生英文能力分班及 英文能力檢測」 成果概要 97 學年度教學卓越計畫 97D 計畫簡介 ► 因應現行英文分班制度因課程內容調整, 已不再適合作為編班基礎,語言教學中心 特別研發「大一新生英文能力分班及英文 能力檢測」,製作具鑑別度之編班試題, 能夠將學生編入合適班級,並依據學生不.
Chapter 0 Computer Science (CS) 計算機概論 教學目標 瞭解現代電腦系統之發展歷程 瞭解電腦之元件、功能及組織架構 瞭解電腦如何表示資料及其處理方式 學習運用電腦來解決問題 認知成為一位電子資訊人才所需之基本條 件 認知進階電子資訊之相關領域.
Stat_chi21 類別資料 (Categorical data) 一種質性資料, 其觀察值可歸類於數個不相交的項目內, 例 : 性別, 滿意度, …, 一般以各項的統計次數表現. 分析此種資料,通常用卡方檢定 類別資料分析 卡方檢定 卡方檢定基本理論 一個含有 k 項的試驗,設 p i.
全球化環境下的組織管理 本章內容 全球化的趨勢 國際化的階段 國際企業母公司對分支機構的管理取向 國際企業組織的結構設計 Chapter 6
如何寫好一篇報告 釐清問題 選擇資料庫 制定檢索策略 實機操作. 報告內容 跨國公司 – 公司簡介(如公司成立時間、目前在幾個國家有據 點等) – 公司計畫 – 公司組織 – 公司領導 – 公司控制 – 總結(主要為結論,但是如果可以對該公司提出建 議,會額外加分) – 參考文獻.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
元智大學應用外語系碩士班 Department of Foreign Languages and Applied Linguistics Master’s Program.
Structural Equation Modeling Chapter 7 觀察變數路徑分析=路徑分析 觀察變數路徑分析.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 肆 資料分析與表達.
1 政治大學東亞所選修 -- 計量分析與中國大陸研究黃智聰 政治大學東亞所選修 課程名稱:計量分析與中國大陸研究 (量化分析) 授課老師:黃智聰 授課內容:時間序列與橫斷面資料的共用 參考書目: Hill, C. R., W. E. Griffiths, and G. G. Judge, (2001),
Factor Analysis There are two main types of factor analysis:
專題製作(一) 邱明星 老師 遠東科技大學 資訊管理系. 專題製作的緣起 Learning how to learn. Know more. Learning space.
物流通關專業教室 (052) 國貿實務專業教室 (054) 企業資源整合專業教室 (055) 整合各專業教室資訊進行 即時動態及異常管理 (051) 貿易運籌研訓中心 專業實習、 、 師生研究討論 、、 、、 海關模擬系統、貨況追蹤、貨物 進出倉管理、海空運通關承攬、 通關自動化作業等相關模組 全球運籌決策中心.
論文研討 2 學分 授課教師:吳俊概.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 貳 研究設計.
FGU LDT. FGU EIS 96 ‧ 8 ‧ 25 FGU LDT 佛光大學學習與數位科技學系.
Unit 2: 多變量分析基本認識 2.1 變量與衡量尺度 (1)變量(Variate)
第三部分:研究設計 ( 二): 研究工具的信效度 與研究效度 (第九章之第 306 頁 -308 頁;第四章)
8-1 Chapter 8 技術與流程 組織的技術 製造業的核心技術 服務業的核心技術 非核心技術與組織管理 工作流程的相依性.
文件製作 陳彥良. Phase 1 Identifying problems Identifying opportunities Identifying objectives.
選舉制度、政府結構與政 黨體系 Cox (1997) Electoral institutions, cleavage strucuters, and the number of parties.
大華技術學院九十三學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 適用班別:夜資工技一A 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
第二十一章 研究流程、論文結構        與研究範例 21-1  研究流程 21-2  論文結構 21-3  研究範例.
緒論 統計的範圍 敘述統計 推論統計 有母數統計 無母數統計 實驗設計 統計的本質 大量 數字 客觀.
生物統計學 期中報告 組員 : 醫放一 A 王小明 醫放一 A 王小明 醫放一 A 王大明 醫放一 A 王大明 2009/04/14.
1 CHAOYANG UNIVERSITY OF TECHNOLOGY 朝 陽 科 技 大 學 研 究 發 展 處 專案計畫審查辦法說明會 報告人:洪處長弘祈.
教材名稱:網際網路安全之技術及其應用 (編號: 41 ) 計畫主持人:胡毓忠 副教授 聯絡電話: 教材網址: 執行單位: 政治大學資訊科學系.
資訊教育 東海大學物理系施奇廷 92 學年度第一學期. 物理研究的新方法 傳統:理論與實驗 傳統:理論與實驗 現在:理論、實驗、計算 現在:理論、實驗、計算 計算 vs. 實驗:計算物理可視為在所有的條 件皆能完美調控之下的「數值實驗室」 計算 vs. 實驗:計算物理可視為在所有的條 件皆能完美調控之下的「數值實驗室」
1 高等演算法 授課老師 : 陳建源 研究室 : 法 401 網站
資訊教育 吳桂光 東海大學物理系助理教授 Tel: 3467 Office: ST223 Office hour: Mon (10:30-12am) or by appointment.
研究資料的分析. 資料分析的基本策略  General data analysis strategies 1.Sketching ideas 2.Taking notes 3.Summarize field nores 4.Getting feedback on ideas 5.Working with.
政治大學公企中心必修課-- 社會科學研究方法(量化分析)--黃智聰
Analyzing Case Study Evidence
Chapter 3 Entropy : An Additional Balance Equation
大華技術學院九十五學年度 資工系計算機概論教學大綱 吳弘翔. Wu Hung-Hsiang2 科目名稱:計算機概論與實習 授課老師:吳弘翔 學分數: 4 修別:必修 老師信箱:
寬頻通訊系統基礎教育計畫 分項計畫二 寬頻網路通訊 主要參與人員 黎碧煌 教 授 鍾順平 副教授
Structural Equation Modeling Chapter 6 CFA 根據每個因素有多重指標,以減少 測量誤差並可建立問卷的構念效度 驗證性因素分析.
統計計算與模擬 政治大學統計系余清祥 2010 年 2 月 23 日 第一週:導論
統計學 ( 二 ) 朝陽科技大學工業工程與管理系副教授洪弘祈 Statistics II2 企業與統計之關係 n 品質管制 n 預測統計與市場調查 n 績效與人事管理 n 例行報告之方案評估與決策參考 n 製程改善 n 研發能力之提昇 n 產品可靠度 n 生產管制.
資訊教育 吳桂光 東海大學物理系助理教授 Tel: Office: ST223 Office hour: Mon (8:10-12am) or by appointment.
資訊教育 吳桂光 東海大學物理系助理教授 Tel: 3467 Office: ST223 Office hour: Tue, Fri. (10-11am)
Cluster Analysis 目的 – 將資料分成幾個相異性最大的群組 基本問題 – 如何衡量事務之間的相似性 – 如何將相似的資料歸入同一群組 – 如何解釋群組的特性.
Structural Equation Modeling Chapter 8 潛伏變數路徑分析=完全 SEM 潛伏變數路徑分析.
McGraw-Hill/Irwin © 2003 The McGraw-Hill Companies, Inc.,All Rights Reserved. 壹 企業研究導論.
全國奈米科技人才培育推動計畫辦公室 中北區奈米科技K -12 教育發展中心計畫 簡 報 報告人:楊鏡堂教授 計畫執行單位:國立清華大學動力機械工程學系 計畫種子學校:教育部顧問室 94 年度奈米科技人才培育先導型計畫年度成果報告 中華民國九十四年十月十四日.
數位系統實驗 -- 課程介紹 教師:潘欣泰. 課程目標  數位系統導論課程之實習課程  接續數位電路學課程  養成學生動手做的習慣  使學生對數位電路設計有實際的體驗.
教學經驗交流 前置基礎知識之檢定 ( 第一堂課 ) 教學研究整合 ( 國際 SCI,EI 期刊 ) 跨校聯合自編教材與教科書 ( 工程數學、 邊界元素法與有限元素法 ) 研究所課題 ─ Term paper 不定期小考 ( 取代指定作業 ) 教學與導師制度結合 ( 對學生自願加課 ) 鼓勵大學生參與國科會大專生專題研究計畫.
Social Media Marketing Research 社會媒體行銷研究 SMMR01 TMIXM1A Thu 7,8 (14:10-16:00) U505 Course Orientation for Social Media Marketing Research Min-Yuh.
社會媒體服務專題 Special Topics in Social Media Services 淡江大學 淡江大學 資訊管理學系 資訊管理學系 Dept. of Information ManagementDept. of Information Management, Tamkang UniversityTamkang.
Social Media Management 社會媒體管理 SMM01 TMIXM1A Fri. 7,8 (14:10-16:00) L215 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management,
Social Media Marketing Management 社會媒體行銷管理 SMMM12 TLMXJ1A Tue 12,13,14 (19:20-22:10) D325 確認性因素分析 (Confirmatory Factor Analysis) Min-Yuh Day 戴敏育.
Social Media Marketing Analytics 社群網路行銷分析 SMMA04 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 測量構念 (Measuring the Construct) Min-Yuh Day 戴敏育.
Social Media Marketing Research 社會媒體行銷研究 SMMR09 TMIXM1A Thu 7,8 (14:10-16:00) L511 Confirmatory Factor Analysis Min-Yuh Day 戴敏育 Assistant Professor.
Applied Quantitative Analysis and Practices
Applied Quantitative Analysis and Practices LECTURE#16 By Dr. Osman Sadiq Paracha.
Exploratory Factor Analysis
Applied Quantitative Analysis and Practices LECTURE#21 By Dr. Osman Sadiq Paracha.
Applied Quantitative Analysis and Practices
Multivariate Data Analysis Chapter 3 – Factor Analysis.
Case Study for Information Management 資訊管理個案
Applied Quantitative Analysis and Practices LECTURE#19 By Dr. Osman Sadiq Paracha.
Chapter 14 EXPLORATORY FACTOR ANALYSIS. Exploratory Factor Analysis  Statistical technique for dealing with multiple variables  Many variables are reduced.
大數據行銷研究 Big Data Marketing Research
大數據行銷研究 Big Data Marketing Research
Lecturing 11 Exploratory Factor Analysis
Presentation transcript:

Social Media Marketing Analytics 社群網路行銷分析 SMMA06 TLMXJ1A (MIS EMBA) Fri 12,13,14 (19:20-22:10) D326 探索性因素分析 (Exploratory Factor Analysis) Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang University 淡江大學 淡江大學 資訊管理學系 資訊管理學系 tku.edu.tw/myday/ Tamkang University

週次 (Week) 日期 (Date) 內容 (Subject/Topics) /02/27 和平紀念日補假 ( 放假一天 ) /03/06 社群網路行銷分析課程介紹 (Course Orientation for Social Media Marketing Analytics) /03/13 社群網路行銷分析 (Social Media Marketing Analytics) /03/20 社群網路行銷研究 (Social Media Marketing Research) /03/27 測量構念 (Measuring the Construct) /04/03 兒童節補假 ( 放假一天 ) /04/10 社群網路行銷個案分析 I (Case Study on Social Media Marketing I) /04/17 測量與量表 (Measurement and Scaling) /04/24 探索性因素分析 (Exploratory Factor Analysis) 課程大綱 ( Syllabus) 2

週次 (Week) 日期 (Date) 內容 (Subject/Topics) /05/01 期中報告 (Midterm Presentation) /05/08 確認性因素分析 (Confirmatory Factor Analysis) /05/15 社會網路分析 (Social Network Analysis) /05/22 社群網路行銷個案分析 II (Case Study on Social Media Marketing II) /05/29 社群運算與大數據分析 (Social Computing and Big Data Analytics) /06/05 社群網路情感分析 (Sentiment Analysis on Social Media) /06/12 期末報告 I (Term Project Presentation I) /06/19 端午節補假 ( 放假一天 ) /06/26 期末報告 II (Term Project Presentation II) 課程大綱 ( Syllabus) 3

Outline Seven stages of applying factor analysis Exploratory Factor Analysis (EFA) vs. Confirmatory Factor Analysis (CFA) Identify the differences between component analysis and common factor analysis models How to determine the number of factors to extract How to name a factor 4 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Joseph F. Hair, William C. Black, Barry J. Babin, Rolph E. Anderson, Multivariate Data Analysis, 7th Edition, Prentice Hall, Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall (Hair et al., 2009)

Chapter 3 Exploratory Factor Analysis 6 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall (Hair et al., 2009)

Exploratory Factor Analysis (EFA) Definition – Exploratory factor analysis (EFA) is an interdependence technique whose primary purpose is to define the underlying structure among the variables in the analysis. 7 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Exploratory Factor Analysis (EFA) Examines the interrelationships among a large number of variables and then attempts to explain them in terms of their common underlying dimensions. These common underlying dimensions are referred to as factors. A summarization and data reduction technique that does not have independent and dependent variables, but is an interdependence technique in which all variables are considered simultaneously. 8 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Correlation Matrix for Store Image Elements 9 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Correlation Matrix of Variables After Grouping Using Factor Analysis 10 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall Shaded areas represent variables likely to be grouped together by factor analysis.

Application of Factor Analysis to a Fast-Food Restaurant 11 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall Service Quality Food Quality Waiting Time Cleanliness Friendly Employees Taste Temperature Freshness FactorsVariables

Factor Analysis Decision Process Stage 1: Objectives of Factor Analysis Stage 2: Designing a Factor Analysis Stage 3: Assumptions in Factor Analysis Stage 4: Deriving Factors and Assessing Overall Fit Stage 5: Interpreting the Factors Stage 6: Validation of Factor Analysis Stage 7: Additional uses of Factor Analysis Results 12 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Factor Analysis Decision Process 13 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall 1. Objectives of Factor Analysis 2. Designing a Factor Analysis 3. Assumptions in Factor Analysis 4. Deriving Factors and Assessing Overall Fit 5. Interpreting the Factors 6. Validation of Factor Analysis 7. Additional uses of Factor Analysis Results

Stage 1: Objectives of Factor Analysis 1.Is the objective exploratory or confirmatory? 2.Specify the unit of analysis. 3.Data summarization and/or reduction? 4.Using factor analysis with other techniques. 14 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Factor Analysis Outcomes Data summarization – derives underlying dimensions that, when interpreted and understood, describe the data in a much smaller number of concepts than the original individual variables. Data reduction – extends the process of data summarization by deriving an empirical value (factor score or summated scale) for each dimension (factor) and then substituting this value for the original values. 15 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Types of Factor Analysis Exploratory Factor Analysis (EFA) – is used to discover the factor structure of a construct and examine its reliability. It is data driven. Confirmatory Factor Analysis (CFA) – is used to confirm the fit of the hypothesized factor structure to the observed (sample) data. It is theory driven. 16 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Factor Analysis Decision Process 17 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall 1. Objectives of Factor Analysis 2. Designing a Factor Analysis 3. Assumptions in Factor Analysis 4. Deriving Factors and Assessing Overall Fit 5. Interpreting the Factors 6. Validation of Factor Analysis 7. Additional uses of Factor Analysis Results

Stage 2: Designing a Factor Analysis Three Basic Decisions: 1.Calculation of input data – R vs. Q analysis. 2.Design of study in terms of number of variables, measurement properties of variables, and the type of variables. 3.Sample size necessary. 18 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–1 Factor Analysis Design Factor analysis is performed most often only on metric variables, although specialized methods exist for the use of dummy variables. A small number of “dummy variables” can be included in a set of metric variables that are factor analyzed. If a study is being designed to reveal factor structure, strive to have at least five variables for each proposed factor. For sample size: – the sample must have more observations than variables. – the minimum absolute sample size should be 50 observations. Maximize the number of observations per variable, with a minimum of five and hopefully at least ten observations per variable. 19 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

5 Variables : 1 Factor (5:1) 20 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall Factor 1 Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

Customer Perceived Value, Customer Satisfaction, and Loyalty 21 Customer Perceived Performance Customer Expectations Customer Expectations Customer Perceived Value Customer Perceived Value Customer Satisfaction Customer Satisfaction Customer Loyalty Customer Loyalty Source: Philip Kotler & Kevin Lane Keller, Marketing Management, 14th ed., Pearson, 2012

5 Variables : 1 Factor (5:1) 22 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall Loyalty Variable 1 Variable 2 Variable 3 Variable 4 Variable 5

Measuring Loyalty 5 Variables (Items) (5:1) (Zeithaml, Berry & Parasuraman, 1996) 23 Loyalty Say positive things about XYZ to other people. Recommend XYZ to someone who seeks your advice. Encourage friends and relatives to do business with XYZ. Consider XYZ your first choice to buy services. Do more business with XYZ in the next few years. Source: Valarie A. Zeithaml, Leonard L. Berry and A. Parasuraman, “The Behavioral Consequences of Service Quality,” Journal of Marketing, Vol. 60, No. 2 (Apr., 1996), pp

minimum absolute sample size should be 50 observations 24 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Sample Size: at least ten observations per variable (1:10) 25 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Sample Size: 25 variables * 10 observations (25*10=250) 26 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Factor Analysis Decision Process 27 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall 1. Objectives of Factor Analysis 2. Designing a Factor Analysis 3. Assumptions in Factor Analysis 4. Deriving Factors and Assessing Overall Fit 5. Interpreting the Factors 6. Validation of Factor Analysis 7. Additional uses of Factor Analysis Results

Stage 3: Assumptions in Factor Analysis Three Basic Decisions 1.Calculation of input data – R vs. Q analysis. 2.Design of study in terms of number of variables, measurement properties of variables, and the type of variables. 3.Sample size required. 28 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Assumptions Multicollinearity – Assessed using MSA (measure of sampling adequacy). The MSA is measured by the Kaiser-Meyer-Olkin (KMO) statistic. As a measure of sampling adequacy, the KMO predicts if data are likely to factor well based on correlation and partial correlation. KMO can be used to identify which variables to drop from the factor analysis because they lack multicollinearity. There is a KMO statistic for each individual variable, and their sum is the KMO overall statistic. KMO varies from 0 to 1.0. Overall KMO should be.50 or higher to proceed with factor analysis. If it is not, remove the variable with the lowest individual KMO statistic value one at a time until KMO overall rises above.50, and each individual variable KMO is above.50. Homogeneity of sample factor solutions 29 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–2 Testing Assumptions of Factor Analysis There must be a strong conceptual foundation to support the assumption that a structure does exist before the factor analysis is performed. A statistically significant Bartlett’s test of sphericity (sig. <.05) indicates that sufficient correlations exist among the variables to proceed. Measure of Sampling Adequacy (MSA) values must exceed.50 for both the overall test and each individual variable. Variables with values less than.50 should be omitted from the factor analysis one at a time, with the smallest one being omitted each time. 30 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Factor Analysis Decision Process 31 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall 1. Objectives of Factor Analysis 2. Designing a Factor Analysis 3. Assumptions in Factor Analysis 4. Deriving Factors and Assessing Overall Fit 5. Interpreting the Factors 6. Validation of Factor Analysis 7. Additional uses of Factor Analysis Results

Stage 4: Deriving Factors and Assessing Overall Fit Selecting the factor extraction method – common vs. component analysis. Determining the number of factors to represent the data. 32 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Extraction Decisions Which method? – Principal Components Analysis – Common Factor Analysis How to rotate? – Orthogonal or Oblique rotation 33 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Extraction Method Determines the Types of Variance Carried into the Factor Matrix 34 Diagonal Value Variance Diagonal Value Variance Unity (1) Unity (1) Communality Communality Total Variance Total Variance Common Common Specific and Error Specific and Error Variance extracted Variance not used Variance not used Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Principal Components vs. Common? Two Criteria – Objectives of the factor analysis. – Amount of prior knowledge about the variance in the variables. 35 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Number of Factors? A Priori Criterion Latent Root Criterion Percentage of Variance Scree Test Criterion 36 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Eigenvalue Plot for Scree Test Criterion 37 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–3 Choosing Factor Models and Number of Factors Although both component and common factor analysis models yield similar results in common research settings (30 or more variables or communalities of.60 for most variables): – the component analysis model is most appropriate when data reduction is paramount. – the common factor model is best in well-specified theoretical applications. Any decision on the number of factors to be retained should be based on several considerations: – use of several stopping criteria to determine the initial number of factors to retain. – Factors With Eigenvalues greater than 1.0. – A pre-determined number of factors based on research objectives and/or prior research. – Enough factors to meet a specified percentage of variance explained, usually 60% or higher. – Factors shown by the scree test to have substantial amounts of common variance (i.e., factors before inflection point). – More factors when there is heterogeneity among sample subgroups. Consideration of several alternative solutions (one more and one less factor than the initial solution) to ensure the best structure is identified. 38 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Processes of Factor Interpretation Estimate the Factor Matrix Factor Rotation Factor Interpretation Respecification of factor model, if needed, may involve... – Deletion of variables from analysis – Desire to use a different rotational approach – Need to extract a different number of factors – Desire to change method of extraction 39 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rotation of Factors Factor rotation – the reference axes of the factors are turned about the origin until some other position has been reached. Since unrotated factor solutions extract factors based on how much variance they account for, with each subsequent factor accounting for less variance. The ultimate effect of rotating the factor matrix is to redistribute the variance from earlier factors to later ones to achieve a simpler, theoretically more meaningful factor pattern. 40 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Two Rotational Approaches 1. Orthogonal – axes are maintained at 90 degrees. 2. Oblique – axes are not maintained at 90 degrees. 41 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Orthogonal Factor Rotation 42 Unrotated Factor II Unrotated Factor I Rotated Factor I Rotated Factor II V1V1 V2V2 V3V3 V4V4 V5V5 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Oblique Factor Rotation 43 Unrotated Factor II Unrotated Factor I Oblique Rotation: Factor I Orthogonal Rotation: Factor II V1V1 V2V2 V3V3 V4V4 V5V5 Orthogonal Rotation: Factor I Oblique Rotation: Factor II Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Orthogonal Rotation Methods Quartimax (simplify rows) Varimax (simplify columns) Equimax (combination) 44 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–4 Choosing Factor Rotation Methods Orthogonal rotation methods – are the most widely used rotational methods. – are The preferred method when the research goal is data reduction to either a smaller number of variables or a set of uncorrelated measures for subsequent use in other multivariate techniques. Oblique rotation methods – best suited to the goal of obtaining several theoretically meaningful factors or constructs because, realistically, very few constructs in the “real world” are uncorrelated 45 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Which Factor Loadings Are Significant? Customary Criteria = Practical Significance. Sample Size & Statistical Significance. Number of Factors ( = >) and/or Variables ( = <). 46 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Guidelines for Identifying Significant Factor Loadings Based on Sample Size 47 Factor LoadingSample Size Needed for Significance* * Significance is based on a.05 significance level (a), a power level of 80 percent, and standard errors assumed to be twice those of conventional correlation coefficients. Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–5 Assessing Factor Loadings While factor loadings of +.30 to +.40 are minimally acceptable, values greater than +.50 are considered necessary for practical significance. To be considered significant: – A smaller loading is needed given either a larger sample size, or a larger number of variables being analyzed. – A larger loading is needed given a factor solution with a larger number of factors, especially in evaluating the loadings on later factors. Statistical tests of significance for factor loadings are generally very conservative and should be considered only as starting points needed for including a variable for further consideration. 48 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Factor Analysis Decision Process 49 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall 1. Objectives of Factor Analysis 2. Designing a Factor Analysis 3. Assumptions in Factor Analysis 4. Deriving Factors and Assessing Overall Fit 5. Interpreting the Factors 6. Validation of Factor Analysis 7. Additional uses of Factor Analysis Results

Stage 5: Interpreting the Factors Selecting the factor extraction method – common vs. component analysis. Determining the number of factors to represent the data. 50 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Interpreting a Factor Matrix: 1.Examine the factor matrix of loadings. 2.Identify the highest loading across all factors for each variable. 3.Assess communalities of the variables. 4.Label the factors. 51 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–6 Interpreting The Factors An optimal structure exists when all variables have high loadings only on a single factor. Variables that cross-load (load highly on two or more factors) are usually deleted unless theoretically justified or the objective is strictly data reduction. Variables should generally have communalities of greater than.50 to be retained in the analysis. Respecification of a factor analysis can include options such as: – deleting a variable(s), – changing rotation methods, and/or – increasing or decreasing the number of factors. 52 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Factor Analysis Decision Process 53 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall 1. Objectives of Factor Analysis 2. Designing a Factor Analysis 3. Assumptions in Factor Analysis 4. Deriving Factors and Assessing Overall Fit 5. Interpreting the Factors 6. Validation of Factor Analysis 7. Additional uses of Factor Analysis Results

Stage 6: Validation of Factor Analysis Confirmatory Perspective. Assessing Factor Structure Stability. Detecting Influential Observations. 54 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Factor Analysis Decision Process 55 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall 1. Objectives of Factor Analysis 2. Designing a Factor Analysis 3. Assumptions in Factor Analysis 4. Deriving Factors and Assessing Overall Fit 5. Interpreting the Factors 6. Validation of Factor Analysis 7. Additional uses of Factor Analysis Results

Stage 7: Additional Uses of Factor Analysis Results Selecting Surrogate Variables Creating Summated Scales Computing Factor Scores 56 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–7 Summated Scales A summated scale is only as good as the items used to represent the construct. While it may pass all empirical tests, it is useless without theoretical justification. Never create a summated scale without first assessing its unidimensionality with exploratory or confirmatory factor analysis. Once a scale is deemed unidimensional, its reliability score, as measured by Cronbach’s alpha: – should exceed a threshold of.70, although a.60 level can be used in exploratory research. – the threshold should be raised as the number of items increases, especially as the number of items approaches 10 or more. With reliability established, validity should be assessed in terms of: – convergent validity = scale correlates with other like scales. – discriminant validity = scale is sufficiently different from other related scales. – nomological validity = scale “predicts” as theoretically suggested. 57 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–8 Representing Factor Analysis In Other Analyses The single surrogate variable: – Advantages: simple to administer and interpret. – Disadvantages: does not represent all “facets” of a factor prone to measurement error. Factor scores: – Advantages: represents all variables loading on the factor, best method for complete data reduction. Are by default orthogonal and can avoid complications caused by multicollinearity. – Disadvantages: interpretation more difficult since all variables contribute through loadings Difficult to replicate across studies. 58 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Rules of Thumb 3–8 (cont.) Representing Factor Analysis In Other Analyses Summated scales: – Advantages: compromise between the surrogate variable and factor score options. reduces measurement error. represents multiple facets of a concept. easily replicated across studies. – Disadvantages: includes only the variables that load highly on the factor and excludes those having little or marginal impact. not necessarily orthogonal. Require extensive analysis of reliability and validity issues. 59 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

60 Variable Description Variable Type Data Warehouse Classification Variables X1Customer Typenonmetric X2Industry Typenonmetric X3Firm Sizenonmetric X4Regionnonmetric X5Distribution Systemnonmetric Performance Perceptions Variables X6Product Qualitymetric X7E-Commerce Activities/Websitemetric X8Technical Supportmetric X9Complaint Resolutionmetric X10Advertising metric X11Product Linemetric X12Salesforce Imagemetric X13Competitive Pricingmetric X14Warranty & Claimsmetric X15New Productsmetric X16Ordering & Billingmetric X17Price Flexibilitymetric X18Delivery Speedmetric Outcome/Relationship Measures X19Satisfactionmetric X20Likelihood of Recommendationmetric X21Likelihood of Future Purchasemetric X22Current Purchase/Usage Levelmetric X23Consider Strategic Alliance/Partnership in Futurenonmetric Description of HBAT Primary Database Variables Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

61 Rotated Component Matrix “Reduced Set” of HBAT Perceptions Variables Component Communality 1234 X9 – Complaint Resolution X18 – Delivery Speed X16 – Order & Billing X12 – Salesforce Image X7 – E-Commerce Activities X10 – Advertising X8 – Technical Support X14 – Warranty & Claims X6 – Product Quality X13 – Competitive Pricing Sum of Squares Percentage of Trace Extraction Method: Principal Component Analysis. Rotation Method: Varimax. Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

62 Scree Test for HBAT Component Analysis Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

Summary 1.What are the major uses of factor analysis? 2.What is the difference between component analysis and common factor analysis? 3.Is rotation of factors necessary? 4.How do you decide how many factors to extract? 5.What is a significant factor loading? 6.How and why do you name a factor? 7.Should you use factor scores or summated ratings in follow-up analyses? 63 Source: Hair et al. (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall

64 Source: 蕭文龍, 統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS), 碁峰資訊, 2014

65 Source: 蕭文龍, 統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS), 碁峰資訊, 2014

國內第一本全面介紹 SmartPLS 操作、 PLS-SEM 結 構方程模式的實用書 國內第一本深入探討最新量表發展、中介和調節 變數的應用、 Reflective( 反映性 ) 和 Formative( 形 成性 ) 指標的發展和模式的指定 本書適合作為統計分析和多變量分析的教科書, 也是 Hair, Black, Babin, and Anderson 所撰寫的 Multivariate data analysis Multivariate Data Analysis 多變量分析的最佳輔助參考書籍,更是 Hair, Hult, Ringle, and Sarstedt 所撰寫的 A Primer on Partial Least Squares Structural Equation Modeling(PLS-SEM) 的最優輔助參考書籍。 66 蕭文龍, 統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS), 碁峰資訊, 2014 Source:

以實用的角度引導學員從學習社會科學概念開始介紹, 到完成一份專題、研究生論文和論文投稿,對於大學部 專題,碩博士學生,量化的研究人員都有莫大的幫助。 以統計分析 ( 多變量分析 ) 為主軸,整合了理論的介紹、量 化的研究、量表的發展、卡方檢定、因素分析、迴歸分 析、區別分析和邏輯迴歸、單因子變異數分析、多變量 變異數分析、典型相關分析、信度和效度分析、聯合分 析多元尺度和集群分析,第二代統計技術 – 結構方程模式 (SEM) 。 內容涵蓋 SmartPLS 基本操作、 PLS-SEM 結構方程模式的學 習範例、反映性和形成性指標與模式的指定、二階和高 階因果關係、 SEM 結構方程模式實例、中介和調節變數 的應用、論文結構與研究範例和 EndNote 書目管理軟體使 用說明。 67 蕭文龍, 統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS), 碁峰資訊, 2014 Source:

chapter 01 統計分析簡介與數量方法的基礎 chapter 02 SPSS 的基本操作 chapter 03 量表的發展,信度和效度 chapter 04 檢視資料與敘述性統計 chapter 05 統相關分析 (Correlation Analysis) chapter 06 卡方檢定 chapter 07 平均數比較 (t 檢定 ) chapter 08 因素分析 chapter 09 迴歸分析 chapter 10 區別分析與邏輯迴歸 68 蕭文龍, 統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS), 碁峰資訊, 2014 Source:

chapter 11 單變量變異數分析 chapter 12 多變量變異數分析 chapter 13 典型相關 chapter 14 聯合分析、多元尺度方法和集群分析 chapter 15 結構方程模式之 Partial Least Squares(PLS) 偏最小平 方 chapter 16 Smartpls 統計分析軟體介紹 chapter 17 PLS-SEM(SmartPLS) 結構方程模式的學習範例 chapter 18 PLS-SEM 結構方程模式實例 chapter 19 反映性 Reflective 與形成性 Formative 模式 chapter 20 交互作用、中介和調節 ( 干擾 ) chapter 21 研究流程、論文結構與發表於期刊的建議 69 蕭文龍, 統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS), 碁峰資訊, 2014 Source:

蕭文龍, 多變量分析最佳入門實用書 --SPSS+LISREL, 第二版, 碁峰資訊, Source:

71 蕭文龍, 多變量分析最佳入門實用書 --SPSS+LISREL, 第二版, 碁峰資訊, 2009 Source:

蕭文龍, 多變量分析最佳入門實用書 --SPSS+LISREL, 第二版, 碁峰資訊, 2009 本書通過 Scientific Software International (SSI) LISREL 原廠審核通過, 成為 LISREL 原廠推薦的第四本華文書, 相關網址: 本書可作為 Hair ( 2006 ) Multivariate Data Analysis 一書的最佳輔助參考 書籍 從實用的角度出發,完整介紹社會科學概念、統計軟體的運用以及統 計分析,協助學習者完成量化的研究及其相關專題或論文。 內容整合了社會科學概念、量化研究、量表發展與統計分析。 文中納入第二代統計技術,包括結構方程模式 (SEM) 、 LISREL 基本操作 SEM 結構方程模式範例與 SEM 結構方程模式實例。 特別介紹研究流程、論文結構與研究範例、 EndNote 書目管理軟體使 用說明、 LISREL 和 Nvivo 軟體的取得與說明。 隨書光碟附贈 LISREL For Windows 學生版 72 Source:

蕭文龍, 多變量分析最佳入門實用書 --SPSS+LISREL, 第二版, 碁峰資訊, 2009 Ch01 社會科學的研究與數量方法的基礎 Ch02 SPSS 的基本操作 Ch03 檢視資料與敘述性統計 Ch04 相關分析 Ch05 卡方檢定 Ch06 平均數比較 Ch07 因素分析 Ch08 迴歸分析 Ch09 區別分析與邏輯迴歸 Ch10 單變量變異數分析 Ch11 多變量變異數分析 Ch12 典型相關 73 Source:

Ch13 量表的發展、信度和效度 Ch14 SEM 結構方程模式 Ch15 LISREL 的基本操作 Ch16 結構方程模式的學習範例 Ch17 結構方程模式的學習範例進階 Ch18 SEM 結構方程模式實例 Ch19 聯合分析、多元尺度方法和集群分析 Ch20 交互作用、中介和調節 ( 干擾 ) 效果之驗證 Ch21 研究流程、論文結構與研究範例 附錄 A 統計分配表 附錄 B ENDNOTE 書目管理軟體使用說明 附錄 C 軟體的取得與說明 LISREL 蕭文龍, 多變量分析最佳入門實用書 --SPSS+LISREL, 第二版, 碁峰資訊, Source:

References Joseph F. Hair, William C. Black, Barry J. Babin, Rolph E. Anderson (2009), Multivariate Data Analysis, 7th Edition, Prentice Hall Valarie A. Zeithaml, Leonard L. Berry and A. Parasuraman (1996), “The Behavioral Consequences of Service Quality,” Journal of Marketing, Vol. 60, No. 2 (Apr., 1996), pp 蕭文龍 (2014), 統計分析入門與應用: SPSS 中文版+ PLS-SEM (SmartPLS), 碁峰資訊 蕭文龍 (2009), 多變量分析最佳入門實用書 --SPSS+LISREL, 第 二版, 碁峰資訊 吳明隆 (2006), SPSS 統計應用學習實務:問卷分析與應用統 計, 三版, 知城數位科技 75