1 SBM411 資料探勘 陳春賢. 2 Lecture I Class Introduction.

Slides:



Advertisements
Similar presentations
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Advertisements

2015/6/1Course Introduction1 Welcome! MSCIT 521: Knowledge Discovery and Data Mining Qiang Yang Hong Kong University of Science and Technology
統計與生物資訊學 1 : 課程簡介 (Introduction) 陳光琦助理教授 (Kuang-Chi Chen)
楊竹星 國立成功大學電機工程系 98學年第一學期
Chapter 0 Computer Science (CS) 計算機概論 教學目標 瞭解現代電腦系統之發展歷程 瞭解電腦之元件、功能及組織架構 瞭解電腦如何表示資料及其處理方式 學習運用電腦來解決問題 認知成為一位電子資訊人才所需之基本條 件 認知進階電子資訊之相關領域.
SAK 5609 DATA MINING Prof. Madya Dr. Md. Nasir bin Sulaiman
1 Syllabus Computer Network 計算機網路 賴秉樑 Dept. of Electronic Engineering National Chin-Yi University of Technology Spring 2008.
演算法 李朱慧. 演算法的課程目的 學習已知常用的演算法 分析程式複雜度 複雜度 vs 執行時間 學習思考過程方式.
電腦網路 4 教師:賴薇如 4 助教:李宜興 4 Room: Phone:
資訊系統應用 CS / 客戶服務人員 陳鵬升 ( 資電館 Room 743, 程式語言實驗室 ) Tel: #3900 唐宗麟 ( 紅樓 …)
Introduction to Data Mining with Case Studies
Chapter 0 Computer Science (CS) 計算機概論 General Goals To give you a solid, broad understanding of how a computing system works To develop an appreciation.
現代密碼學 Contemporary Cryptography. 2 Course Information Instructor: 左瑞麟 (Raylin Tso) Office: 大仁樓
英語菁英學程 招生說明會 課程介紹 Presented By 管理學院 楊銘賢 楊銘賢 院長. B 組 國際企業組 97 學年度 上學期 管理學 企業資源規劃 財務管理 97 學年度 下學期 生產與作業管理 管理資訊系統 資訊管理導論 供應鏈管理.
Introduction to WEKA Aaron 2/13/2009. Contents Introduction to weka Download and install weka Basic use of weka Weka API Survey.
1 Introduction to Data Mining Instructor: Y.T. Wang ( 王耀德 ) Office: 主顧 686 Phone: (04) # Office hours:
田野實察: 參訪南洋台灣姐妹會 授課教師:林津如 第十一堂課 96 年度教育部補助推動新移民之原生社會文化、公民與人權及健康醫療教學發展計畫 高雄醫學大學性別研究所林津如教授及陳麒文執行.
CS 5941 CS583 – Data Mining and Text Mining Course Web Page 05/cs583.html.
Data Warehousing 資料倉儲 Min-Yuh Day 戴敏育 Assistant Professor 專任助理教授 Dept. of Information Management, Tamkang University Dept. of Information ManagementTamkang.
Intelligent Systems Lecture 23 Introduction to Intelligent Data Analysis (IDA). Example of system for Data Analyzing based on neural networks.
CSCI 347 – Data Mining Lecture 01 – Course Overview.
Course Title Database Technologies Instructor: Dr ALI DAUD Course Credits: 3 with Lab Total Hours: 45 approximately.
Course Introduction Software Engineering
CS525 DATA MINING COURSE INTRODUCTION YÜCEL SAYGIN SABANCI UNIVERSITY.
Machine Learning Lecture 1. Course Information Text book “Introduction to Machine Learning” by Ethem Alpaydin, MIT Press. Reference book “Data Mining.
Data Mining with Oracle using Classification and Clustering Algorithms Proposed and Presented by Nhamo Mdzingwa Supervisor: John Ebden.
Internet English Instructor: Dr. Yan-Ling Hwang, Assistant Professor Class Time : Tuesday 10:10 a.m. - 12:00 p.m. Classroom : 電腦教室 Office : A26 應語系研究室.
Data Warehousing/Mining 1 Data Warehousing/Mining Comp 150DW Course Overview Instructor: Dan Hebert.
1 計算機概論 Introduction to Computer Science Instructor: Lu, Neng-Pin ( 盧能彬 ) –ftp:// /npluftp:// /nplu.
Introduction of Data Mining and Association Rules cs157 Spring 2009 Instructor: Dr. Sin-Min Lee Student: Dongyi Jia.
SCHILLER INTERNATIONAL UNIVERSITY
Open Systems and Electronic Commerce
1 Image Processing Instructor : Prof. Sei-Wang Chen, PhD Office : Applied Science Building, Room 101 Contaction: Tel:
資訊科技專案管理 授課教師 : 王耀德 研究室 : 靜宜大學 二研 105 電話 : (04) # Web site:
Most of contents are provided by the website Introduction TJTSD66: Advanced Topics in Social Media Dr.
1 IMM472 資料探勘 陳春賢. 2 Lecture I Class Introduction.
General Information 439 – Data Mining Assist.Prof.Dr. Derya BİRANT.
Course Overview for Compilers J. H. Wang Sep. 14, 2015.
ITIS 4510/5510 Web Mining Spring Overview Class hour 5:00 – 6:15pm, Tuesday & Thursday, Woodward Hall 135 Office hour 3:00 – 5:00pm, Tuesday, Woodward.
Management 周 宇 超 Office: SL412 Tel:
1 CHAPTER 4 Data Warehousing, Access, Analysis, Mining, and Visualization.
Course Overview for Compilers J. H. Wang Sep. 20, 2011.
CPE542: Pattern Recognition Course Introduction Dr. Gheith Abandah د. غيث علي عبندة.
CSCE 5073 Section 001: Data Mining Spring Overview Class hour 12:30 – 1:45pm, Tuesday & Thur, JBHT 239 Office hour 2:00 – 4:00pm, Tuesday & Thur,
General Information Course Id: COSC6368 Artificial Intelligence Professor: Ricardo Vilalta Classroom:AH 110 Telephone: (713)
1 作業系統 Operating System Instructor –Lu, Neng-Pin ( 盧能彬 ) –ftp:// /npluftp:// /nplu.
CEN 137 Computer Literature and Skills INTERNATIONAL BURCH UNIVERSITY DEPARTMENT of INFORMATION TECHNOLOGIES Dr. A. Turan Özcerit
1 SBM411 資料探勘 陳春賢. 2 Lecture I Class Introduction.
1 IMM472 資料探勘 陳春賢. 2 Lecture I Class Introduction.
ELEC 1009E-1B02 Introduction to Computer Science 計算機概論 2011 Fall.
Introduction to Computer Science Kun-Mao Chao ( 趙坤茂 ) Department of Computer Science and Information Engineering National Taiwan University, Taiwan ( 台大資訊工程系.
資料通訊 Data Communication Fall 2011, NTNU-CSIE. General Information Time: Tuesday 2:10pm~5:00pm Place: S203 Instructor: 陳伶志 Ling-Jyh Chen Phone:
Waqas Haider Bangyal. 2 Source Materials “ Data Mining: Concepts and Techniques” by Jiawei Han & Micheline Kamber, Second Edition, Morgan Kaufmann, 2006.
ELEC 1009E-1B02 Introduction to Computer Science 計算機概論 2010 Fall.
系統程式 System Programming
Sotarat Thammaboosadee, Ph.D. EGIT563- Data Mining Course Outline.
FNA/Spring CENG 562 – Machine Learning. FNA/Spring Contact information Instructor: Dr. Ferda N. Alpaslan
DATA MINING: LECTURE 1 By Dr. Hammad A. Qureshi Introduction to the Course and the Field There is an inherent meaning in everything. “Signs for people.
衛生福利部 金門醫院 資源中心名稱: 衛生福利部金門醫院 在地化教材名稱: 正確用藥 - 大富翁遊戲.
1 SBM411 資料探勘 陳春賢. 2 Lecture I Class Introduction.
DATABASE SYSTEM COURSE SYLLABUS Ghulam Imaduddin Informatics Engineering Muhammadiyah Jakarta University Database System by Ghulam I1.
CSC 4740 / 6740 Fall 2016 Data Mining Instructor: Yubao Wu Fall 2016.
分群分析 (Cluster Analysis)
Data Mining: Concepts and Techniques Course Outline
Intro. to Computer Science
Dept. of Computer Science University of Liverpool
Intro. to Computer Science
Intro. to Computer Science
Welcome! Knowledge Discovery and Data Mining
CSCE 4143 Section 001: Data Mining Spring 2019.
Presentation transcript:

1 SBM411 資料探勘 陳春賢

2 Lecture I Class Introduction

3 Instructor Information  姓名 : 陳春賢  Ph.D. from Iowa State University, USA  M.S. from Iowa State University, USA  B.E. from 新竹清華大學  Technical specialty: Databases and Intelligent Decision Support Systems.  Research interests: Data Mining, Biomedical Informatics, Artificial Intelligence, Artificial Neural Networks

4 Contact Info  Contact Info: TEL: (03) ext

5 Course Objectives To learn  the terms, concepts and applications of data mining  the processes, techniques and models of data mining  data preprocessing techniques  data Warehouse and OLAP technology  to use free data mining software: Weka to analyze certain data sets

Learning Goals and Objectives (AACSB 國際商管認證 ) AoL 施測的學習目標 2. Our students will be able to solve problems effectively Our students will be able to assess alternatives and make the decision. Criterion I : Criteria identification Criterion II : Criteria application (Evaluate how criteria are applied to alternatives) Criterion III : Decision making basing on assessments

Learning Goals and Objectives (AACSB 國際商管認證 ) AoL 需公告的學習目標. Our students will be able to apply theories into practices Our students will be able to identify appropriate theories and associated boundary conditions. Criterion I : Identifying appropriate theory Criterion II : Understanding the theory Criterion III : Understanding the boundary conditions of the theory

8 Course Content  Introduction to data mining  Main data mining techniques Association rule mining Classification and prediction Cluster analysis  Open-source DM software in Java: Weka 3.x  Data preprocessing techniques  Data warehouse and OLAP technology

9 Textbook and References  Textbook Jiawei Han and Micheline Kamber, Data Mining : Concepts and Techniques, 2nd edition, Morgan Kaufmann Publishers, San Francisco, CA, USA,  參考書 Margaret H. Dunham, Data Mining: Introductory and Advanced Topics, Prentice Hall, Upper Saddle River, NJ, USA, 王派洲 譯,資料探勘 : 概念與方法,第二版 (Jiawei Han and Micheline Kamber, Data Mining:Concepts and Techniques,2/e) , 滄海書局, 2008.

10 Grading Policy  10% : Class Participation  40% : Midterm Exam One-hour close-book Exam (8/15, Class 9) Take-home Exam (Due 8/22, Class 10)  50% : Final Project 5% : Proposal (problem analysis) 10% : Final Report 35% : Data Analysis and Presentation

11 Project Proposal (8/29, Class 11) The proposal is to plan your project. It should at least include :  Title  Team member  Motivation  Problem and data description including data source, description, description of important attributes, data year, record number, attribute number and other  Schedule  A short description of the used DM techniques  Data analysis process data preprocessing, data mining, knowledge presentation/evaluation  Performance evaluation method  Others

12 Final Project  A project on DM application  Use Weka to analyze certain data sets  A presentation and report to introduce your project, at least including Title and motivation Problem, data description, data range, basic data statistics How the problem can be solved The DM algorithms you use/implement and related literature Analysis process data preprocessing, data mining, knowledge presentation/evaluation Class distribution at each attribute Performance evaluation method Result and value of the discovered knowledge Discussion  Each student can use 25 min for presentation 17~20 min for presentation, 3 min for Q&A, 2 min for getting ready

13 Class Schedule  Class 1: Class Introduction/Introduction to data mining(6/6)  Class 2-3: Classification and prediction (6/13, 7/4)  Class 4: Cluster analysis (7/11)  Class 5: The applications of data mining (7/18, 林詩偉老師 )  Class 6: Cluster analysis (7/25)  Class 7 : Big data analysis (8/1, 林詩偉老師 )  Class 8-9: Association rule mining (8/8, 8/15) (One-hour Close-book 8/15)  Class 10: Weka (open DMware) Introduction & Lab (8/22) (Take-home Exam due 8/22)  Class 11: Data preprocessing (8/29) (Proposal of final project due 8/29)  Class 12: Data warehouse (9/5 上午 )  Class 13: Final project presentation (9/5 下午 )

14 Internet Resources  Lecture Slides Browser URL: ftp:// /cchen 104Summer →104S_Data Mining_eMIS → 上課投影片  Open source DM software in Java: Weka 3.x.x

15 Dataset Web Sites for Mining  UCI Machine Learning Repository  衛生福利部食品藥物管理署 OPEN DATA 開放資料集  政府資料開放平臺 / 全部資料集清單  DASL  JSE Data Archive  KDNuggets  MLnet Online Information Service

16 Question & Answer