Specific Object Recognition using SIFT

Slides:



Advertisements
Similar presentations
Distinctive Image Features from Scale-Invariant Keypoints
Advertisements

Feature extraction: Corners
Distinctive Image Features from Scale-Invariant Keypoints David Lowe.
Group Meeting Presented by Wyman 10/14/2006
CSE 473/573 Computer Vision and Image Processing (CVIP)
The SIFT (Scale Invariant Feature Transform) Detector and Descriptor
TP14 - Local features: detection and description Computer Vision, FCUP, 2014 Miguel Coimbra Slides by Prof. Kristen Grauman.
CSE 473/573 Computer Vision and Image Processing (CVIP)
SURF: Speeded-Up Robust Features
Algorithms and Applications in Computer Vision
Lecture 6: Feature matching CS4670: Computer Vision Noah Snavely.
1 Interest Operators Find “interesting” pieces of the image –e.g. corners, salient regions –Focus attention of algorithms –Speed up computation Many possible.
A Study of Approaches for Object Recognition
Object Recognition with Invariant Features n Definition: Identify objects or scenes and determine their pose and model parameters n Applications l Industrial.
1 Interest Operator Lectures lecture topics –Interest points 1 (Linda) interest points, descriptors, Harris corners, correlation matching –Interest points.
Automatic Image Alignment (feature-based) : Computational Photography Alexei Efros, CMU, Fall 2005 with a lot of slides stolen from Steve Seitz and.
Distinctive Image Feature from Scale-Invariant KeyPoints
Feature extraction: Corners and blobs
Interest Points and Corners Computer Vision CS 143, Brown James Hays Slides from Rick Szeliski, Svetlana Lazebnik, Derek Hoiem and Grauman&Leibe 2008 AAAI.
Distinctive image features from scale-invariant keypoints. David G. Lowe, Int. Journal of Computer Vision, 60, 2 (2004), pp Presented by: Shalomi.
Object Recognition Using Distinctive Image Feature From Scale-Invariant Key point D. Lowe, IJCV 2004 Presenting – Anat Kaspi.
Scale Invariant Feature Transform (SIFT)
Automatic Matching of Multi-View Images
Image Features: Descriptors and matching
Blob detection.
1 Invariant Local Feature for Object Recognition Presented by Wyman 2/05/2006.
Automatic Image Alignment (feature-based) : Computational Photography Alexei Efros, CMU, Fall 2006 with a lot of slides stolen from Steve Seitz and.
CS4670: Computer Vision Kavita Bala Lecture 8: Scale invariance.
Distinctive Image Features from Scale-Invariant Keypoints David G. Lowe – IJCV 2004 Brien Flewelling CPSC 643 Presentation 1.
Overview Introduction to local features
The Beauty of Local Invariant Features
Computer vision.
Final Exam Review CS485/685 Computer Vision Prof. Bebis.
1 Interest Operators Harris Corner Detector: the first and most basic interest operator Kadir Entropy Detector and its use in object recognition SIFT interest.
Recognition and Matching based on local invariant features Cordelia Schmid INRIA, Grenoble David Lowe Univ. of British Columbia.
Object Tracking/Recognition using Invariant Local Features Applications l Mobile robots, driver assistance l Cell phone location or object recognition.
Overview Harris interest points Comparing interest points (SSD, ZNCC, SIFT) Scale & affine invariant interest points Evaluation and comparison of different.
CSE 185 Introduction to Computer Vision Local Invariant Features.
Evaluation of interest points and descriptors. Introduction Quantitative evaluation of interest point detectors –points / regions at the same relative.
CVPR 2003 Tutorial Recognition and Matching Based on Local Invariant Features David Lowe Computer Science Department University of British Columbia.
Feature extraction: Corners 9300 Harris Corners Pkwy, Charlotte, NC.
Lecture 7: Features Part 2 CS4670/5670: Computer Vision Noah Snavely.
Vision and SLAM Ingeniería de Sistemas Integrados Departamento de Tecnología Electrónica Universidad de Málaga (Spain) Acción Integrada –’Visual-based.
Overview Introduction to local features Harris interest points + SSD, ZNCC, SIFT Scale & affine invariant interest point detectors Evaluation and comparison.
Feature extraction: Corners and blobs. Why extract features? Motivation: panorama stitching We have two images – how do we combine them?
A Tutorial on using SIFT Presented by Jimmy Huff (Slightly modified by Josiah Yoder for Winter )
Project 3 questions? Interest Points and Instance Recognition Computer Vision CS 143, Brown James Hays 10/21/11 Many slides from Kristen Grauman and.
Local features and image matching October 1 st 2015 Devi Parikh Virginia Tech Disclaimer: Many slides have been borrowed from Kristen Grauman, who may.
Local features: detection and description
CS654: Digital Image Analysis
CSE 185 Introduction to Computer Vision Local Invariant Features.
Blob detection.
SIFT Scale-Invariant Feature Transform David Lowe
Distinctive Image Features from Scale-Invariant Keypoints
Local features: main components
Corners and interest points
TP12 - Local features: detection and description
Source: D. Lowe, L. Fei-Fei Recap: edge detection Source: D. Lowe, L. Fei-Fei.
Local features: detection and description May 11th, 2017
SURF: Speeded-Up Robust Features
CSE 455 – Guest Lectures 3 lectures Contact Interest points 1
The SIFT (Scale Invariant Feature Transform) Detector and Descriptor
Interest Points & Descriptors 3 - SIFT
Large Scale Image Deduplication
Local features and image matching
Lecture VI: Corner and Blob Detection
Feature descriptors and matching
Lecture 5: Feature invariance
Recognition and Matching based on local invariant features
Presentation transcript:

Specific Object Recognition using SIFT گروه بینایی ماشین و پردازش تصویر Machine Vision and Image Processing Group (Student Group) Electronic Research Center of Iran University of Science and Technology http://mvip.iust.ac.ir Specific Object Recognition using SIFT Presentation by: Amir Azizi آبان 1389 November 2010

Example for specific object recognition: Introduction Example for specific object recognition: Search photos on web for the particular places j. sivic amir.s.azizi@gmail.com

Introduction Why is it difficult? j. sivic amir.s.azizi@gmail.com

1- Viewpoint Challenges amir.s.azizi@gmail.com

2- Illumination Challenges amir.s.azizi@gmail.com

3- Occlusion Challenges amir.s.azizi@gmail.com

4- Scale Challenges amir.s.azizi@gmail.com

5- Deformation Challenges amir.s.azizi@gmail.com

6- Background Clutter Challenges amir.s.azizi@gmail.com

Local Features (Interest points or key points): New Local Features (Interest points or key points): Corners Blobs Dataset Some of applications: Specific object recognition Tracking Image registration Camera calibration …. amir.s.azizi@gmail.com

Desired Properties of local features: Repeatability - The same feature can be found in several images despite geometric and photometric transformation Distinctiveness - Each feature has a distinctive description Locality - A feature occupies a relatively small area of the image; robust to clutter and occlusion Quantity - Number of features Efficiency - Applications that need to speed amir.s.azizi@gmail.com

Local feature-based object recognition نیرومندی نسبت به موارد زیر: تغییر نقطه دید تغییر روشنایی تغییر شکل و کجی تغییر اندازه انسداد شلوغی و درهم برهمی سرعت نیز اهمیت دارد مراحل: 1- آشکارساز (Detector): استخراج نقاط کلیدی 2- توصیف کننده (Descriptor): ساخت بردار ویژگی برای هر نقطه کلیدی 3- انطباق (Matching) انطباق بردارهای ویژگی با دیتاست amir.s.azizi@gmail.com

Local feature-based object recognition توصیف کننده ها آشکارسازها Hessian-Laplace Hessian-Affine Shape Context Geometric Blur SIFT Descriptor SURF Descriptor Harris Harris-Laplace Harris-Affine MSER Salient Regions SIFT Detector (DoG) SURF Detector amir.s.azizi@gmail.com

SIFT: Scale Invariant Feature Transform 1999 and 2004 amir.s.azizi@gmail.com

𝐻= 𝐿 𝑥𝑥 (𝑥,𝑦,𝜎) 𝐿 𝑥𝑦 (𝑥,𝑦,𝜎) 𝐿 𝑥𝑦 (𝑥,𝑦,𝜎) 𝐿 𝑦𝑦 (𝑥,𝑦,𝜎) Hessian Matrix In mathematics, the Hessian matrix (or simply the Hessian) is the square matrix of second-order partial derivatives of a function; that is, it describes the local curvature of a function of many variables. We want to find Blobs, so SIFT uses extrema of Hessian matrix trace: 𝐻= 𝐿 𝑥𝑥 (𝑥,𝑦,𝜎) 𝐿 𝑥𝑦 (𝑥,𝑦,𝜎) 𝐿 𝑥𝑦 (𝑥,𝑦,𝜎) 𝐿 𝑦𝑦 (𝑥,𝑦,𝜎) 𝐿 𝑥𝑥 𝑥,𝑦,𝜎 = 𝜕 2 𝜕𝑥 2 𝑃 Laplacian=𝑇𝑟𝑎𝑐𝑒= 𝐿 𝑥𝑥 𝑥,𝑦,𝜎 + 𝐿 𝑦𝑦 (𝑥,𝑦,𝜎) amir.s.azizi@gmail.com

SCALE-SPACE 1- SIFT Detector هدف: آشکارسازی مکان هایی که با تغییر اندازه تصویر ثابت بمانند. 1- Lindeberg 1994,1998 2- Koendernik 1984 SCALE-SPACE 𝐿 𝑥,𝑦,𝜎 =𝐺 𝑥,𝑦,𝜎 ∗𝑓(𝑥,𝑦) Scale = σ amir.s.azizi@gmail.com

Laplacian=𝑇𝑟𝑎𝑐𝑒= 𝐿 𝑥𝑥 𝑥,𝑦,𝜎 + 𝐿 𝑦𝑦 (𝑥,𝑦,𝜎) 1- SIFT Detector SCALE-SPACE 𝐻= 𝐿 𝑥𝑥 (𝑥,𝑦,𝜎) 𝐿 𝑥𝑦 (𝑥,𝑦,𝜎) 𝐿 𝑥𝑦 (𝑥,𝑦,𝜎) 𝐿 𝑦𝑦 (𝑥,𝑦,𝜎) 𝐿 𝑥,𝑦,𝜎 =𝐺 𝑥,𝑦,𝜎 ∗𝑓(𝑥,𝑦) Laplacian=𝑇𝑟𝑎𝑐𝑒= 𝐿 𝑥𝑥 𝑥,𝑦,𝜎 + 𝐿 𝑦𝑦 (𝑥,𝑦,𝜎) Laplacian=𝑇𝑟𝑎𝑐𝑒= (𝐺 𝑥𝑥 𝑥,𝑦,𝜎 + 𝐺 𝑦𝑦 (𝑥,𝑦,𝜎)) ∗𝑓(𝑥,𝑦) 𝐿𝑜𝐺= 𝛻 2 𝐺 𝐺 𝑥,𝑦,𝑘𝜎 −𝐺 𝑥,𝑦,𝜎 ≈(𝑘−1) 𝜎 2 𝛻 2 𝐺 DoG Mikolajczyk 2002: normalized Laplacian gives more robust features amir.s.azizi@gmail.com

1- SIFT Detector ساخت هرم: Down sampling amir.s.azizi@gmail.com

1- SIFT Detector آشکارسازی اکسترمم ها: amir.s.azizi@gmail.com

تعیین محل دقیق نقطه کلیدی: 1- SIFT Detector تعیین محل دقیق نقطه کلیدی: amir.s.azizi@gmail.com

حذف نقاط کلیدی ناپایدار: 1- SIFT Detector حذف نقاط کلیدی ناپایدار: نقاط دارای کنتراست پایین نقاطی که بطور ضعیفی روی لبه ها قرار گرفته اند amir.s.azizi@gmail.com

2- SIFT Descriptor تخصیص جهت به نقاط کلیدی amir.s.azizi@gmail.com

Rotation Invariance: 2- SIFT Descriptor amir.s.azizi@gmail.com

So we have a feature vector with 128 dimensions 2- SIFT Descriptor 4 ×4 ×8=128 So we have a feature vector with 128 dimensions amir.s.azizi@gmail.com

روش David Lowe برای انطباق 3- Matching روش David Lowe برای انطباق * ساخت درخت k-d دارای k بعد * محاسبه تقریبی نزدیکترین همسایه اول و دوم به هر نقطه کلیدی در دیتا ست به کمک روش BBF * نسبت نردیکترین همسایه اول به نزدیکترین همسایه دوم محاسبه می شود * در انتها برای افزایش دقت شناسایی نسبت به تغییر شکل و استتار از تبدیل هاف نیز استفاده می شود. amir.s.azizi@gmail.com

با سپاس از توجه شما ؟ amir.s.azizi@gmail.com