6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22.

Slides:



Advertisements
Similar presentations
Combinatorial Auction
Advertisements

6.896: Topics in Algorithmic Game Theory Lecture 21 Yang Cai.
(Single-item) auctions Vincent Conitzer v() = $5 v() = $3.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 16.
Algorithmic mechanism design Vincent Conitzer
6.896: Topics in Algorithmic Game Theory Lecture 20 Yang Cai.
(More on) characterizing dominant-strategy implementation in quasilinear environments (see, e.g., Nisan’s review: Chapter 9 of Algorithmic Game Theory.
Auction Theory Class 5 – single-parameter implementation and risk aversion 1.
Algorithmic Game Theory Uri Feige Robi Krauthgamer Moni Naor Lecture 10: Mechanism Design Lecturer: Moni Naor.
Approximating optimal combinatorial auctions for complements using restricted welfare maximization Pingzhong Tang and Tuomas Sandholm Computer Science.
CPS Bayesian games and their use in auctions Vincent Conitzer
Seminar in Auctions and Mechanism Design Based on J. Hartline’s book: Approximation in Economic Design Presented by: Miki Dimenshtein & Noga Levy.
An Approximate Truthful Mechanism for Combinatorial Auctions An Internet Mathematics paper by Aaron Archer, Christos Papadimitriou, Kunal Talwar and Éva.
Multi-item auctions with identical items limited supply: M items (M smaller than number of bidders, n). Three possible bidder types: –Unit-demand bidders.
Auction Theory Class 3 – optimal auctions 1. Optimal auctions Usually the term optimal auctions stands for revenue maximization. What is maximal revenue?
Optimal auction design Roger Myerson Mathematics of Operations research 1981.
Game Theory 1. Game Theory and Mechanism Design Game theory to analyze strategic behavior: Given a strategic environment (a “game”), and an assumption.
Part 1: Optimal Multi-Item Auctions Constantinos Daskalakis EECS, MIT Reference: Yang Cai, Constantinos Daskalakis and Matt Weinberg: An Algorithmic Characterization.
A Sufficient Condition for Truthfulness with Single Parameter Agents Michael Zuckerman, Hebrew University 2006 Based on paper by Nir Andelman and Yishay.
Seminar In Game Theory Algorithms, TAU, Agenda  Introduction  Computational Complexity  Incentive Compatible Mechanism  LP Relaxation & Walrasian.
Yang Cai Oct 15, Interim Allocation rule aka. “REDUCED FORM” : Variables: Interim Allocation rule aka. “REDUCED FORM” : New Decision Variables j.
Sponsored Search Presenter: Lory Al Moakar. Outline Motivation Problem Definition VCG solution GSP(Generalized Second Price) GSP vs. VCG Is GSP incentive.
6.853: Topics in Algorithmic Game Theory Fall 2011 Matt Weinberg Lecture 24.
Bundling Equilibrium in Combinatorial Auctions Written by: Presented by: Ron Holzman Rica Gonen Noa Kfir-Dahav Dov Monderer Moshe Tennenholtz.
6.896: Topics in Algorithmic Game Theory Lecture 15 Constantinos Daskalakis.
Yang Cai Sep 17, An overview of today’s class Expected Revenue = Expected Virtual Welfare 2 Uniform [0,1] Bidders Example Optimal Auction.
Algorithmic Applications of Game Theory Lecture 8 1.
Mechanism Design and the VCG mechanism The concept of a “mechanism”. A general (abstract) solution for welfare maximization: the VCG mechanism. –This is.
Ron Lavi Presented by Yoni Moses.  Introduction ◦ Combining computational efficiency with game theoretic needs  Monotonicity Conditions ◦ Cyclic Monotonicity.
Limitations of VCG-Based Mechanisms Shahar Dobzinski Joint work with Noam Nisan.
Agent Technology for e-Commerce Chapter 10: Mechanism Design Maria Fasli
SECOND PART: Algorithmic Mechanism Design. Mechanism Design MD is a subfield of economic theory It has a engineering perspective Designs economic mechanisms.
Towards a Characterization of Truthful Combinatorial Auctions Ron Lavi, Ahuva Mu’alem, Noam Nisan Hebrew University.
Combinatorial Auction. Conbinatorial auction t 1 =20 t 2 =15 t 3 =6 f(t): the set X  F with the highest total value the mechanism decides the set of.
Competitive Analysis of Incentive Compatible On-Line Auctions Ron Lavi and Noam Nisan SISL/IST, Cal-Tech Hebrew University.
Yang Cai Sep 15, An overview of today’s class Myerson’s Lemma (cont’d) Application of Myerson’s Lemma Revelation Principle Intro to Revenue Maximization.
Auction Theory Class 2 – Revenue equivalence 1. This class: revenue Revenue in auctions – Connection to order statistics The revelation principle The.
Yang Cai Sep 8, An overview of the class Broad View: Mechanism Design and Auctions First Price Auction Second Price/Vickrey Auction Case Study:
CPS 173 Mechanism design Vincent Conitzer
Multi-Unit Auctions with Budget Limits Shahar Dobzinski, Ron Lavi, and Noam Nisan.
© 2009 Institute of Information Management National Chiao Tung University Lecture Note II-3 Static Games of Incomplete Information Static Bayesian Game.
VCG Computational game theory Fall 2010 by Inna Kalp and Yosef Heskia.
Auction Seminar Optimal Mechanism Presentation by: Alon Resler Supervised by: Amos Fiat.
More on Social choice and implementations 1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAA A Using slides by Uri.
6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 21.
Mechanism Design CS 886 Electronic Market Design University of Waterloo.
Auction Theory תכנון מכרזים ומכירות פומביות Topic 7 – VCG mechanisms 1.
By: Amir Ronen, Department of CS Stanford University Presented By: Oren Mizrahi Matan Protter Issues on border of economics & computation, 2002.
Yang Cai Oct 08, An overview of today’s class Basic LP Formulation for Multiple Bidders Succinct LP: Reduced Form of an Auction The Structure of.
Econ 805 Advanced Micro Theory 1 Dan Quint Fall 2009 Lecture 4.
Topic 2: Designing the “optimal auction” Reminder of previous classes: Discussed 1st price and 2nd price auctions. Found equilibrium strategies. Saw that.
Yang Cai Oct 06, An overview of today’s class Unit-Demand Pricing (cont’d) Multi-bidder Multi-item Setting Basic LP formulation.
Mechanism Design II CS 886:Electronic Market Design Sept 27, 2004.
Auctions serve the dual purpose of eliciting preferences and allocating resources between competing uses. A less fundamental but more practical reason.
Combinatorial Auction. A single item auction t 1 =10 t 2 =12 t 3 =7 r 1 =11 r 2 =10 Social-choice function: the winner should be the guy having in mind.
Bayesian Algorithmic Mechanism Design Jason Hartline Northwestern University Brendan Lucier University of Toronto.
1 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: A AAA A AA A.
Comp/Math 553: Algorithmic Game Theory Lecture 10
Comp/Math 553: Algorithmic Game Theory Lecture 11
Comp/Math 553: Algorithmic Game Theory Lecture 08
CPS Mechanism design Michael Albert and Vincent Conitzer
Comp/Math 553: Algorithmic Game Theory Lecture 09
Comp/Math 553: Algorithmic Game Theory Lecture 13
Vincent Conitzer Mechanism design Vincent Conitzer
Vincent Conitzer CPS 173 Mechanism design Vincent Conitzer
Auctions Lirong Xia. Auctions Lirong Xia Sealed-Bid Auction One item A set of bidders 1,…,n bidder j’s true value vj bid profile b = (b1,…,bn) A sealed-bid.
Bayes Nash Implementation
Information, Incentives, and Mechanism Design
Auction Theory תכנון מכרזים ומכירות פומביות
Presentation transcript:

6.853: Topics in Algorithmic Game Theory Fall 2011 Constantinos Daskalakis Lecture 22

Characterizations of Incentive Compatible Mechanisms

Characterizations  Only look at incentive compatible mechanisms (revelation principle)  When is a mechanism incentive compatible? Characterizations of incentive compatible mechanisms.  Maximization of social welfare can be implemented (VCG). Any others? Basic characterization of implementable social choice functions. What social choice functions can be implemented?

Direct Characterization

A mechanism is incentive compatible iff it satisfies the following conditions for every i and every : i.e., for fixed, there is an advertised price per alternative ; the bidder is free to affect the chosen alternative and through that the corresponding price that she’ll pay; (ii) i.e., for every, we have alternative where the quantification is over all alternatives in the range of (i) p i depends on only through the alternative

Direct Characterization (cont’d) Proof (if part): Denote, where respectively is the bidder’s true value and is a potential lie. Since the mechanism optimizes for i, the utility he receives when telling the truth is not less than the utility he receives when lying.

Direct Characterization (cont’d) Proof (cont): (only if part; (i)) Suppose that for some, but. WLOG, assume that. Then a player with type will increase his utility by declaring. (only if part; (ii)): Suppose and let instead s.t. Now a player with type will increase his utility by declaring.

Weak Monotonicity

●The direct characterization involves both the social choice function and the payment functions. ● Weak Monotonicity provides a partial characterization that only involves the social choice function.

Weak Monotonicity (WMON) Def: A social choice function satisfies Weak Monotonicity (WMON) if for all i, all we have that i.e. WMON means that if the social choice changes when a single player changes his valuation, then it must be because the player increased his value of the new choice relative to his value of the old choice.

Weak Monotonicity Theorem: If a mechanism is incentive compatible then satisfies WMON. If all domains of preferences are convex sets (as subsets of an Euclidean space) then for every social choice function that satisfies WMON there exists payment function such that is incentive compatible. Remarks: (i) We will prove the first part of the theorem. The second part is quite involved, and will not be given here. (ii) It is known that WMON is not a sufficient condition for incentive compatibility in general non-convex domains.

Weak Monotonicity (cont’d) Proof: (First part) Assume first that is incentive compatible, and fix i and in an arbitrary manner. The direct characterization implies the existence of fixed prices for all (that do not depend on ) such that whenever the outcome is then i pays exactly. Assume. Since the mechanism is incentive compatible, we have Thus, we have

Minimization of Social Welfare We know maximization of social welfare function can be implemented. How about minimization of social welfare function? No! Because of WMON.

Minimization of Social Welfare Assume there is a single good. WLOG, let. In this case, player 1 wins the good. If we change to, such that. Then player 2 wins the good. Now we can apply the WMON. The outcome changes when we change player 1’s value. But according to WMON, it should be the case that. But. Contradiction.

Weak Monotonicity WMON is a good characterization of implementable social choice functions, but is a local one (i.e. a collection of local conditions). Is there a global characterization of what functions can be implemented, e.g. maximization of social welfare, etc.?

Weighted VCG

Affine Maximizer Def: A social choice function is called an affine maximizer if for some subrange, for some weights and for some outcome weights, for every, we have that i.e. maximization only over A’ weighted social welfare + bonus per alternative

Payments for Affine Maximizer Proposition: Let be an affine maximizer. Define for every i, where is an arbitrary function that does not depend on. Then, is incentive compatible. the appropriate generalization of the VCG payment rule

Payments for Affine Maximizer Proof: First, we can assume wlog. The utility of player i if alternative is chosen is. By multiplying by this expression is maximized when is maximized which is what happens when i reports truthfully.

Roberts Theorem Theorem [Roberts 79]: If, is onto, for every i, and is incentive compatible then is an affine maximizer. Remark: The restriction is crucial (as in Arrow’s theorem); for the case, there do exist incentive compatible mechanisms beyond VCG. |A|=2  single-parameter domains the valuation function of each bidder is described by 1 parameter; i.e, for every bidder i there exists subset W i  A (winning set) and a parameter r i such that the bidder receives value r i for any outcome in W i and 0 otherwise; e.g. single-item/multi-unit auctions, etc.

Bayesian Mechanisms

Bayesian Mechanism Design Def: A Bayesian mechanism design environment consists of the following: setup mech + for every bidder a distribution is known; bidder i’s type is sampled from it Def: A Bayesian mechanism consists of the following: The utility that bidder i receives if the players’ actions are x 1,…,x n is :

Strategy and Equilibrium Def: A strategy of a player i is a function. Def: A profile of strategies is a Bayes Nash equilibrium if for all i, all, and all we have that expected utility of bidder i for using s i, where the expectation is computed with respect to the actions of the other bidders assuming they are using their strategies expected utility if bidder i uses a different action x i ’; still the expectation is computed with respect to the actions of the other bidders assuming they are using their strategies

First Price Auction Theorem: Suppose that we have a single item to auction to two bidders whose values are sampled independently from [0,1]. Then the strategies s 1 (t 1 )=t 1 /2 and s 2 (t 2 )=t 2 /2 are a Bayes Nash equilibrium. Remark: In the above Bayes Nash equilibrium, social welfare is optimized, since the highest winner gets the item. Proof: On the board. Expected Payoff? E[ max(X/2, Y/2)], where X, Y are independent U[0,1] random variables. =1/3 Expected Payoff of second price auction? E[ min(X, Y)], where X, Y are independent U[0,1] random variables. =1/3 !

Revenue Equivalence Theorem All single item auctions that allocate (in Bayes Nash equilibrium) the item to the bidder with the highest value and in which losers pay 0 have identical expected revenue. Given a social choice function we say that a Bayesian mechanism implements if for some Bayes Nash equilibrium we have that for all types : Generally: Revenue Equivalence Theorem: For two Bayesian-Nash implementations of the same social choice function f, * we have the following: if for some type t 0 i of player i, the expected (over the types of the other players) payment of player i is the same in the two mechanisms, then it is the same for every value of t i. In particular, if for each player i there exists a type t 0 i where the two mechanisms have the same expected payment for player i, then the two mechanisms have the same expected payments from each player and their expected revenues are the same.

Revenue Equivalence Theorem (cont.) All single item auctions that allocate (in Bayes Nash equilibrium) the item to the bidder with the highest value and in which losers pay 0 have identical expected revenue. So unless we modify the social choice function we won’t increase revenue. E.g. increasing revenue in single-item auctions: - two uniform [0,1] bidders - run second price auction with reservation price ½ (i.e. give item to highest bidder above the reserve price (if any) and charge him the second highest bid or the reserve, whichever is higher. Claim: Reporting the truth is a dominant strategy equilibrium. The expected revenue of the mechanism is 5/12 (i.e. larger than 1/3).