10.5 CONIC SECTIONS Spring 2010 Math 2644 Ayona Chatterjee.

Slides:



Advertisements
Similar presentations
4.4 Conics Recognize the equations and graph the four basic conics: parabolas, circles, ellipse, and hyperbolas. Write the equation and find the focus.
Advertisements

Section 11.6 – Conic Sections
Mathematics 116 Bittinger Chapter 7 Conics. Mathematics 116 Conics A conic is the intersection of a plane an a double- napped cone.
Section 9.2 The Hyperbola. Overview In Section 9.1 we discussed the ellipse, one of four conic sections. Now we continue onto the hyperbola, which in.
Conic Sections MAT 182 Chapter 11
10.1 Conics and Calculus. Each conic section (or simply conic) can be described as the intersection of a plane and a double-napped cone. CircleParabolaEllipse.
Conic Sections Parabola Ellipse Hyperbola
Conics: Standard Form Pre-Calculus Conics part 1.
Section 7.1 – Conics Conics – curves that are created by the intersection of a plane and a right circular cone.
Chapter 9 Analytic Geometry.
LEARNING TARGETS AFTER YOU COMPLETE THIS CHAPTER, YOU WILL BE ABLE TO:
ESSENTIAL CALCULUS CH09 Parametric equations and polar coordinates.
Conic Sections Digital Lesson. Copyright © by Houghton Mifflin Company, Inc. All rights reserved. 2 Conic Sections Conic sections are plane figures formed.
10.5 Hyperbolas What you should learn: Goal1 Goal2 Graph and write equations of Hyperbolas. Identify the Vertices and Foci of the hyperbola Hyperbolas.
C.P. Algebra II The Conic Sections Index The Conics The Conics Translations Completing the Square Completing the Square Classifying Conics Classifying.
9.1 Conic Sections Conic sections – curves that result from the intersection of a right circular cone and a plane. Circle Ellipse Parabola Hyperbola.
What is the standard form of a parabola who has a focus of ( 1,5) and a directrix of y=11.
JEOPARDY Rational Functions and Conics By: Linda Heckman.
Review Day! Hyperbolas, Parabolas, and Conics. What conic is represented by this definition: The set of all points in a plane such that the difference.
Section 11.7 – Conics in Polar Coordinates If e 1, the conic is a hyperbola. The ratio of the distance from a fixed point (focus) to a point on the conic.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
50 Miscellaneous Parabolas Hyperbolas Ellipses Circles
Conics This presentation was written by Rebecca Hoffman Retrieved from McEachern High School.
Section 7.3 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Section 2 Chapter Copyright © 2012, 2008, 2004 Pearson Education, Inc. Objectives The Circle and the Ellipse Find an equation of a circle.
Algebra II Honors Problem of the Day Homework: p , 9, 13, 15, odds and worksheet Paper folding activity is the problem of the day.
Jeopardy CirclesParabolasEllipsesHyperbolasVocabulary Q $100 Q $200 Q $300 Q $400 Q $500 Q $100 Q $200 Q $300 Q $400 Q $500 Final Jeopardy Source:
Conic Sections Advanced Geometry Conic Sections Lesson 2.
Conic Sections An Introduction. Conic Sections - Introduction Similar images are located on page 604 of your book. You do not need to try and recreate.
Algebra Conic Section Review. Review Conic Section 1. Why is this section called conic section? 2. Review equation of each conic section A summary of.
EXAMPLE 3 Write an equation of a translated parabola Write an equation of the parabola whose vertex is at (–2, 3) and whose focus is at (–4, 3). SOLUTION.
Section 11.1 Section 11.2 Conic Sections The Parabola.
Conic Sections Curves with second degree Equations.
EXAMPLE 3 Write an equation of a translated parabola
Conic Sections.
Conic Sections The Parabola. Introduction Consider a ___________ being intersected with a __________.
Conics This presentation was written by Rebecca Hoffman.
10-5 Parabola. Parabola – “u” shape formed by quadratics. Created but all points equal distance from a focus and a given line called the directrix. Every.
 You probably know the ellipse by its more well-known name: the oval.  An ellipse looks like a circle that has been stretched out.
MATH 1330 Section 8.2A. Circles & Conic Sections To form a conic section, we’ll take this double cone and slice it with a plane. When we do this, we’ll.
MTH 253 Calculus (Other Topics) Chapter 10 – Conic Sections and Polar Coordinates Section 10.1 – Conic Sections and Quadratic Equations Copyright © 2009.
Find the distance between (-4, 2) and (6, -3). Find the midpoint of the segment connecting (3, -2) and (4, 5).
Warm Up What is a vertex of a parabola? What is an asymptote?
Introduction to Conic Sections Conic sections will be defined in two different ways in this unit. 1.The set of points formed by the intersection of a plane.
Horizontal Plane? Diagonal Plane (less steep than the cone) Diagonal Plane (parallel to the slope of the cone) Vertical Plane? (steeper than the slope.
Distance The distance between any two points P and Q is written PQ. Find PQ if P is (9, 1) and Q is (2, -1)
Equation of a Parabola. Do Now  What is the distance formula?  How do you measure the distance from a point to a line?
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics Name the vertex and the distance from the vertex to the focus of the equation (y+4) 2 = -16(x-1) Question:
10.1 Conics and Calculus.
CONIC SECTIONS.
An Ellipse is the set of all points P in a plane such that the sum of the distances from P and two fixed points, called the foci, is constant. 1. Write.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
Conics A conic section is a graph that results from the intersection of a plane and a double cone.
6.2 Equations of Circles +9+4 Completing the square when a=1
Conic Sections “By Definition”
MATH 1330 Section 8.2.
Vertices {image} , Foci {image} Vertices (0, 0), Foci {image}
Chapter 9 Conic Sections.
Section 10.2 – The Ellipse Ellipse – a set of points in a plane whose distances from two fixed points is a constant.
Ellipses Ellipse: set of all points in a plane such that the sum of the distances from two given points in a plane, called the foci, is constant. Sum.
This presentation was written by Rebecca Hoffman
Review Circles: 1. Find the center and radius of the circle.
7.6 Conics
Conic Sections The Parabola.
Section 11.6 – Conic Sections
What are Conic Sections?
Objectives & HW Students will be able to identify vertex, focus, directrix, axis of symmetry, opening and equations of a parabola. HW: p. 403: all.
Chapter 10 Conic Sections.
Presentation transcript:

10.5 CONIC SECTIONS Spring 2010 Math 2644 Ayona Chatterjee

Conic sections result from intersection a cone with a plane.

PARABOLAS A parabolas is the set of points in a plane that are equidistant from a fixed point F (called the focus) and a fixed line (called the directrix). The point halfway between the focus and the directrix lies on the parabola and is called the vertex.

ELLIPSES An ellipse is the set of points in a plane the sum of whose distances from two fixed points F 1 and F 2 is a constant.

Terms The points (a,0) and (-a,0) are called the vertices. The line segment joining the vertices is called the major axis.

HYPERBOLAS A hyperbola is the set of all points in a plane the difference of whose distances from the two fixed points F 1 and F 2 (the foci) is a constant. Hyperbolas is similar to an ellipse, the one change is that the sum of distances has become difference of distances.