Before the 1700’s, scientists thought that the Earth was only 6,000 years old. This mindset was based on biblical references.
However, as scientists began to better understand the processes that shape the Earth today, they realized that these forces, such as weathering, erosion and deposition took a long time, thus they realized that the Earth had to be much older.
By examining rock layers, they began to bunderstand the Earth’s history and age.
Determining geological ages Relative ages – placing rocks and geologic events in their proper sequence, oldest to youngest. Absolute ages – define the actual numerical age of a particular geologic event. For example, large dinosaurs died out 65 mya.
Relative Age Dating assigns a non-specific age to a rock, rock layer or fossil based on its position in the Strata relative to other rocks, rock layers or fossils.
Relative Age Dating is based on a list of principles or rules.
The principle of uniformitarianism can be stated as follows: The physical, chemical, and biological laws that govern processes today have remained constant through time. Law of Uniformitarianism
1st principle of relative dating Principle of original horizontality Layers of sediment are originally deposited horizontally (flat strata has not been disturbed by folding, faulting)
2nd principle of relative dating Law of superposition Developed by Nicolaus Steno in 1669 In an undeformed sequence of sedimentary or volcanic rocks the oldest rocks are at the base; the youngest are at the top
-Superposition
Principle of Superposition
Superposition illustrated by strata in the Grand Canyon
3rd principle of relative dating Principle of cross-cutting relationships states that an igneous rock is always younger than the rock layer that it has intruded or cut across.
3rd principle of relative dating Principle of cross-cutting relationships
3rd principle of relative dating Principle of cross-cutting relationships (example 2)
Cross-Cutting
Principle of Cross-Cutting Relationships The dike is youngest because it cuts across layers 1-4 Layer 1 is the oldest rock layer
Key to Rocks Used in Diagrams
Limestone
Igneous
Metamorphic
Cross-cutting Relationship with multiple overlapping intrusions
Erosional Features and Faults that cut across rock layers are always younger.
Cross-cutting Normal Fault
The Law of Embedded Fragments, or Law of Inclusion, states that rocks that are embedded in another rock must be older than the rock in which it is found. 4 th Principle of Relative Dating
Inclusion
Examples of Law of Inclusions
Inclusion- Conglomerate fragments in overlying Shale
Inclusion-Granite fragments included in overlying Shale
Another method of examining the Geologic Record involved examining instances where rock layers are missing (Unconformities).
The processes that would bring about the removal of these missing layers require large amounts of time.
Unconformities (loss of rock record) An unconformity is a break in the rock record produced by erosion and/or nondeposition Types of unconformities –Nonconformity – sedimentary rocks deposited above metamorphic or igneous rocks (basement) with time lost –Angular unconformity – tilted rocks overlain by flat-lying rocks –Disconformity – strata on either side of the unconformity are parallel (but time is lost)
8_9 (a) (b) (c) Layered sedimentary rocks Nonconformity Metamorphic rock Igneous intrusive rock Younger sedimentary rocks Angular unconformity Older, folded sedimentary rocks Disconformity Brachiopod (290 million years old) Trilobite (490 million years old)
Formation of an angular unconformity Formation of an angular unconformity
Angular Unconformity Erosional Surface Angular Unconformity
Horizontal younger sediments over tilted older sediments Cambrian Tapeats sandstone over Precambrian Unkar Group What type of unconformity is this? Grand Canyon in Arizona
Angular Unconformity
Angular Unconformity, Siccar Point, Scotland
Disconformity
Development of a Nonconformity Pennsylvanian sandstone over Precambrian granite is a nonconformity An intrusion occurs The overburden is eroded away Sea level rises, new sediment is deposited
Nonconformity- Sedimentary Rock layers over older Igneous or Metamorphic
Nonconformity in the Grand Canyon - Sediments deposited over Schist
Cross Cutting Relationships in strata Zoroaster Granite across Vishnu Schist
Rock Layer Correlation Correlation is the matching of rock layers from one area to another. –Matching rocks in different locations due to their similar characteristics –Key Beds –Stratigraphic Matching –Using Index Fossils (fossils that lived and died in one particular geologic time) to match rock layers
Correlating Rock age using Index Fossils and Stratigraphic Matching
Correlation of rock layers Matching strata of similar ages in different regions is called correlation
Correlation of strata in southwestern United States Sections are incomplete Match with fossils and lithology
Matching Rock Layers in Africa and South America
Because of sea-level changes Fossils are more reliable than sequences of sediment facies Sauk Sequence Transgression Note how western BAS is older than eastern BAS Lower Cambrian Middle Cambrian WESTEAST However, falling sea level is useful for worldwide correlation. Why?
Index Fossil Requirements Index Fossils must –be easy to identify –have been very abundant –have lived in a wide geographic area –have existed for a short geologic time (ie: someone’s picture in a yearbook)
NYS Regents Exam diagram
Absolute Age Dating
Radiometric Dating- Proportion of Parent to Daughter Isotopes To get amount of parent material for each half-life, know that after one half-life, you have ½ of parent isotope left, then double your denominator for each half-life thereafter.b
Radioactive Dating- Half Life
Half Life The original isotope is called the parent The new isotope is known as the daughter isotope –Produced by radioactive decay –All parent isotopes decay to their daughter isotope at a specific and unique rate –Based on this decay rate, it takes a certain period of time for one half of the parent isotope to decay to its daughter product –Half life – the time it takes for half of the atoms in the isotope to decay
EX: The half life of C-14 is 5,730 years –So it will take 5,730 years for half of the C-14 atoms in an object to change into N-14 atoms –So in another years, how many atoms will be turned into N-14? HALF LIFE In another 5,730 years, another half of the remaining atoms will degrade to N-14, and so on. So after 2 half lives, one forth of the original C-14 atoms remain After 3 half lives, one eighth of the original c-14 atoms still remain Keeping cutting in half
Radiocarbon Dating –C-14 is useful for dating bones, wood and charcoal up to 75,000 yo –Living things take in C from the environment to make their bodies –Most is C-12 but some is C-14 The ratio of these two types in the enviro is always the same By studying the ratio in an organism it can be compared to the ratio in the environment presently
Comparison with known tree ring sequences Can go back 10,000+ years Based on living and fossil wood Paleoclimate information Paleohydrology Archeology.
Tree Ring Chronology (Dendrochronology)